Problem H
 Pivoting Points
 Time limit: 10 seconds

Consider a set of points P in the plane such that no 3 points are collinear. We construct a "windmill" as follows:
Choose a point p in P and a starting direction such that the line through p in that direction does not intersect any other points in P. Draw that line.

Slowly rotate the line clockwise like a windmill about the point p as its pivot until the line intersects another point p^{\prime} in P. Designate that point p^{\prime} to be the new pivot (call this "promoting" the point p '), and then continue the rotation.

Continue this process until the line has rotated a full 360 degrees, returning to its original direction (it can be shown that the line will also return to its original position after a 360 degree rotation).

During this process, a given point can be promoted multiple times. Considering all possible starting pivots and orientations, find the maximum number of times that a single point can be promoted during a single 360 degree rotation of a line.

Input

The first line of the input will be a single integer n with $2 \leq n \leq 2000$. Following this will be n lines, each with two integers x_{i} and y_{i} with $-10000 \leq x_{i}, y_{i} \leq 10000$.

Output

On one line, write an integer with the largest number of times any particular point can be a pivot when an arbitrary starting line does a full rotation as described above.

Examples

\left.| Sample Input 1 | Sample Output 1 |
| :--- | :--- |
| 3 | |
| -1 | 0 |
| 1 | 0 |
| 0 | 2 |$\right) 2$

Sample Input 2	Sample Output 2	
6		3
0	0	
5	0	
0	5	
5	5	
1	2	
4	2	

