Problem K
 Computer Cache
 Time limit: 5 seconds

Your computer has a cache consisting of n different addresses, indexed from 1 to n. Each address can contain a single byte. The $i^{\text {th }}$ byte is denoted as a_{i}. Initially all cache bytes start off with the value zero. Formally, the cache can be modeled by a byte array of length n that is initially all zeros.

You have m different pieces of data you want to store. The $i^{\text {th }}$ piece of data is a byte array x_{i} of length s_{i}.
You are going to do q different operations on your computer. There are three types of operations:

1ip Load data i starting at position p in the cache. Formally, this means set $a_{p}=x_{i, 1}, a_{p+1}=x_{i, 2}, \ldots, a_{p+s_{i}-1}=$ $x_{i, s_{i}}$, where $x_{i, k}$ represents the k th byte of the array x_{i}. This overwrites any previously stored value in the cache. It is guaranteed that this is a valid operation (e.g. $s_{i}+p-1 \leq n$). It is possible for multiple versions of some data to be loaded in multiple positions at once.
$\mathbf{2 p}$ Print the byte that is stored in address p.
3ilr Increment the $l^{\text {th }}$ through $r^{\text {th }}$ bytes in the $i^{\text {th }}$ piece of data, modulo 256. Formally, this means to set $x_{i, k}=$ $\left(x_{i, k}+1\right) \bmod 256$ for $l \leq k \leq r$. This does not affect values that are already loaded in the cache and only affects future loads.

Input

The first line of input consists of three numbers n, m, and q.

ICPC Pacific Northwest Regional Contest

The following m lines consist of descriptions of the data, one per line. The following q lines consist of descriptions of operations, one per line.

It is guaranteed there is at least one type 2 print query operation in the input. Additionally:

$$
\begin{gathered}
1 \leq n, m, q \leq 5 \times 10^{5} \\
\sum_{i} s_{i} \leq 5 \times 10^{5} \\
s_{i} \geq 1 \\
0 \leq x_{i, j} \leq 255
\end{gathered}
$$

Output

Your program must output the results for each type 2 operation, one integer value per line.

Explanation

21	Nothing has been put into the cache, so print 0
122	The cache is now [0, 1, 2, 1, 3]
111	The cache is now [255, 0, 15, 1, 3]
21	Print the first value of the cache which is 255
24	Print the fourth value of the cache which is 1
31112	The first piece of data becomes [0, 1, 15]. The cache is still $[255,0,15,1,3]$
21	Print the first value of the cache which is 255.
112	The cache becomes [255, 0, 1, 15, 3].
22	Print the second value of the cache which is 0 .
25	Print the fifth value of the cache which is 3 .

| Sample Input $\mathbf{1}$ | Sample Output $\mathbf{1}$ |
| :--- | :--- | :--- | :--- |
| 5 2 10 0
 3 2 5 0
 4 15 255
 4 1 2 1
 2 3 1
 1 2 2
 1 1 1 255
 2 1 0
 2 4 3
 3 1 1 2
 2 1
 1 1 2
 2 2
 2 5 | |

