Uni Cup

Problem D. Triterminant

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

Let b_1, b_2, \ldots, b_n be a sequence of integers. A sequence of polynomials A_1, A_2, \ldots, A_n is defined as

$$A_k(x) = \det \begin{bmatrix} x & b_1 & 0 & \dots & 0 \\ 1 & x & b_2 & \dots & 0 \\ 0 & 1 & x & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & b_k \\ 0 & 0 & \dots & 1 & x \end{bmatrix}$$

We call b_1, b_2, \ldots, b_n good if for all k, all coefficients of A_k do not exceed 1 by the absolute value. You're given a sequence c_1, c_2, \ldots, c_n such that $c_k \in \{-1, 1\}$. You can change any number c_k to $-c_k$. What is the minimum numbers of the sequence elements you should change to get a good sequence?

Input

Each test contains multiple test cases. The first line contains the number of test cases t $(1 \le t \le 10^5)$. Description of the test cases follows.

The first line of each test case contains a single integer $n \ (1 \le n \le 10^5)$.

The second line contains n integers c_1, c_2, \ldots, c_n (c_k is either -1 or 1).

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, output the minimum number of c_1, c_2, \ldots, c_n elements that must be changed to obtain a good sequence.

If there is no valid way to obtain a good sequence from c_1, c_2, \ldots, c_n , output a single integer -1.

Example

standard input	standard output
3	2
4	0
1 1 1 1	2
2	
1 -1	
5	
-1 1 1 1 -1	

Note

c = (1, -1, 1, -1) is a good sequence and can be obtained from (1, 1, 1, 1) in 2 changes.