Problem D. Triterminant

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

Let $b_{1}, b_{2}, \ldots, b_{n}$ be a sequence of integers. A sequence of polynomials $A_{1}, A_{2}, \ldots, A_{n}$ is defined as

$$
A_{k}(x)=\operatorname{det}\left[\begin{array}{ccccc}
x & b_{1} & 0 & \ldots & 0 \\
1 & x & b_{2} & \ldots & 0 \\
0 & 1 & x & . & \vdots \\
\vdots & \vdots & . & \ddots & b_{k} \\
0 & 0 & \ldots & 1 & x
\end{array}\right]
$$

We call $b_{1}, b_{2}, \ldots, b_{n}$ good if for all k, all coefficients of A_{k} do not exceed 1 by the absolute value.
You're given a sequence $c_{1}, c_{2}, \ldots, c_{n}$ such that $c_{k} \in\{-1,1\}$. You can change any number c_{k} to $-c_{k}$.
What is the minimum numbers of the sequence elements you should change to get a good sequence?

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{5}\right)$. Description of the test cases follows.
The first line of each test case contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$.
The second line contains n integers $c_{1}, c_{2}, \ldots, c_{n}$ (c_{k} is either -1 or 1).
It is guaranteed that the sum of n over all test cases does not exceed 10^{5}.

Output

For each test case, output the minimum number of $c_{1}, c_{2}, \ldots, c_{n}$ elements that must be changed to obtain a good sequence.
If there is no valid way to obtain a good sequence from $c_{1}, c_{2}, \ldots, c_{n}$, output a single integer -1 .

Example

			standard input		standard output	
3					2	
4					0	
1	1	1	1			
2						
1	-1					
5						
-1	1	1	1	-1		

Note

$c=(1,-1,1,-1)$ is a good sequence and can be obtained from $(1,1,1,1)$ in 2 changes.

