Problem E. Garbage Disposal

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
256 megabytes

There are 10^{9} types of garbage and 10^{9} types of garbage bins in your country. You are only allowed to dispose garbage of type x into a garbage bin of type y if $\operatorname{gcd}(x, y)=1$, where $\operatorname{gcd}(x, y)$ denotes the greatest common divisor (GCD) of integers x and y.
In your neighborhood, only garbage of type $L \leq x \leq R$ ever occurs, and there are only garbage bins of types $L \leq y \leq R$ available. To avoid overflowing the bins, you want to throw each piece into distinct bin. Given L and R, find a valid distribution or report that it does not exist.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{5}\right)$. Description of the test cases follows.

The first line of each test case contains two integers L and $R\left(1 \leq L \leq R \leq 10^{9}\right)$.
It is guaranteed that the sum of $R-L+1$ over all test cases does not exceed 10^{5}.

Output

For each test case, if there is no valid distribution print -1 .
Otherwise, output $R-L+1$ distinct integers $y_{L}, y_{L+1}, \ldots, y_{R}\left(L \leq y_{i} \leq R\right)$, such that $\operatorname{gcd}\left(y_{i}, i\right)=1$ for every i from L to R.

If there are multiple solutions, print any.

Example

	standard input	standard output				
3		2	1	4	5	3
1	5	11	10	13	12	
10	13	-1				
100	100					

Note

In the first test case, $\operatorname{gcd}(1,1)=\operatorname{gcd}(2,3)=\operatorname{gcd}(3,4)=\operatorname{gcd}(4,5)=\operatorname{gcd}(5,2)=1$.
In the second test case, $\operatorname{gcd}(10,13)=\operatorname{gcd}(11,10)=\operatorname{gcd}(12,11)=\operatorname{gcd}(13,12)=1$.
In the third test case, the only possible assignment is $y_{100}=100$, but $\operatorname{gcd}(100,100)=100 \neq 1$.

