Problem F. Palindromic Polynomial

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 megabytes

Author: Dmytro Fedoriaka

A palindromic polynomial is a non-zero polynomial whose coefficients read the same in both directions.
Alan had a palindromic polynomial A of a degree $d \leq 10^{4}$. He wrote down its values modulo $10^{9}+9$ in n distinct integer points. Then he lost the polynomial. Now he wants to restore it from the points. Help Alan find any palindromic polynomial of degree at most 10^{4} which passes through all given points.
Formally, you are given a list of pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \ldots\left(x_{n}, y_{n}\right), 0 \leq x_{i}, y_{i}<10^{9}+9$. Your task is to find any polynomial $A(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$, such that:

- $0 \leq d \leq 10^{4}$ and $a_{d} \neq 0$;
- $0 \leq a_{i}<10^{9}+9$ for $i=0 \ldots d$;
- $A\left(x_{i}\right) \equiv y_{i}\left(\bmod 10^{9}+9\right)$ for $i=1 \ldots n$;
- $a_{i}=a_{d-i}$ for $i=0 \ldots d$.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 100)$. The description of the test cases follows.
The first line of each test case contains an integer $n\left(1 \leq n \leq 10^{3}\right)$ - the number of points.
The second line of each test case contains n distinct integers $x_{1}, x_{2}, \ldots, x_{n}\left(0 \leq x_{i}<10^{9}+9\right)$.
The third line of each test case contains n integers $y_{1}, y_{2}, \ldots y_{n}\left(0 \leq y_{i}<10^{9}+9\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 10^{3}.

Output

For each test case, print -1 if there is no polynomial that satisfies all the conditions. Otherwise, on the first line print $d-$ the degree of the found polynomial $\left(0 \leq d \leq 10^{4}\right)$, and on the next line print $d+1$ integers $a_{0}, a_{1}, \ldots, a_{d}\left(0 \leq a_{i}<10^{9}+9, a_{d} \neq 0\right)$.
If there are multiple solutions, print any of them.

Example

standard input	standard output
8	1
2	22
01	3
24	2332
3	2
012	121
21036	8
4	123454321
0123	3
14916	16666666726666666721
5	3
01234	16666666726666666721
12596114641116281	-1
2	-1
2500000005	
5375000004	
2	
2500000005	
5375000004	
2	
2500000005	
12	
3	
25000000053	
537500000410	

Note

The polynomial of degree d has exactly $d+1$ coefficients, even though some of them may be zeros. The leading coefficient of a polynomial cannot be zero unless the polynomial is constant zero.
Hence, the following polynomials are palindromic:

- $A(x)=2 x^{3}+3 x^{2}+3 x+2-$ coefficients are $[2,3,3,2]$.
- $A(x)=5 x^{4}+10 x^{2}+5-$ coefficients are $[5,0,10,0,5]$.
- $A(x)=x^{4}+1-$ coefficients are $[1,0,0,0,1]$.
- $A(x)=1-$ coefficients are [1].

The following polynomials are not palindromic:

- $A(x)=2 x^{3}+3 x^{2}+3 x+1-$ coefficients are $[2,3,3,1]$.
- $A(x)=2 x^{4}+3 x^{3}+3 x^{2}+2 x$ - coefficients are $[2,3,3,2,0]$.
- $A(x)=x^{5}+x-$ coefficients are $[1,0,0,0,1,0]$.

As a special case, the polynomial $A(x)=0$ does not satisfy condition $a_{d} \neq 0$ and will not be accepted as an an answer.

Also note that you do not need to minimize the degree of the polynomial.

