Uni Cup

Problem F. Palindromic Polynomial

Input file:standard inputOutput file:standard outputTime limit:2 secondsMemory limit:256 megabytes

Author: Dmytro Fedoriaka

A palindromic polynomial is a non-zero polynomial whose coefficients read the same in both directions.

Alan had a palindromic polynomial A of a degree $d \leq 10^4$. He wrote down its values modulo $10^9 + 9$ in n distinct integer points. Then he lost the polynomial. Now he wants to restore it from the points. Help Alan find any palindromic polynomial of degree at most 10^4 which passes through all given points.

Formally, you are given a list of pairs $(x_1, y_1), (x_2, y_2) \dots (x_n, y_n), 0 \le x_i, y_i < 10^9 + 9$. Your task is to find any polynomial $A(x) = a_d x^d + a_{d-1} x^{d-1} + \dots + a_1 x + a_0$, such that:

- $0 \le d \le 10^4$ and $a_d \ne 0$;
- $0 \le a_i < 10^9 + 9$ for $i = 0 \dots d;$
- $A(x_i) \equiv y_i \pmod{10^9 + 9}$ for $i = 1 \dots n$;
- $a_i = a_{d-i}$ for $i = 0 \dots d$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t $(1 \le t \le 100)$. The description of the test cases follows.

The first line of each test case contains an integer n $(1 \le n \le 10^3)$ — the number of points.

The second line of each test case contains n distinct integers x_1, x_2, \ldots, x_n $(0 \le x_i < 10^9 + 9)$.

The third line of each test case contains n integers $y_1, y_2, \ldots y_n$ $(0 \le y_i < 10^9 + 9)$.

It is guaranteed that the sum of n over all test cases does not exceed 10^3 .

Output

For each test case, print -1 if there is no polynomial that satisfies all the conditions. Otherwise, on the first line print d — the degree of the found polynomial ($0 \le d \le 10^4$), and on the next line print d + 1 integers a_0, a_1, \ldots, a_d ($0 \le a_i < 10^9 + 9, a_d \ne 0$).

If there are multiple solutions, print any of them.

Example

standard input	standard output
8	1
2	2 2
0 1	3
2 4	2 3 3 2
3	2
0 1 2	1 2 1
2 10 36	8
4	1 2 3 4 5 4 3 2 1
0 1 2 3	3
1 4 9 16	1 666666672 666666672 1
5	3
0 1 2 3 4	1 666666672 666666672 1
1 25 961 14641 116281	-1
2	-1
2 50000005	
5 375000004	
2	
2 50000005	
5 375000004	
2	
2 50000005	
1 2	
3	
2 50000005 3	
5 375000004 10	

Note

The polynomial of degree d has exactly d + 1 coefficients, even though some of them may be zeros. The leading coefficient of a polynomial cannot be zero unless the polynomial is constant zero.

Hence, the following polynomials are palindromic:

- $A(x) = 2x^3 + 3x^2 + 3x + 2 \text{coefficients are } [2, 3, 3, 2].$
- $A(x) = 5x^4 + 10x^2 + 5$ coefficients are [5, 0, 10, 0, 5].
- $A(x) = x^4 + 1 \text{coefficients are } [1, 0, 0, 0, 1].$
- A(x) = 1 coefficients are [1].

The following polynomials are **not** palindromic:

- $A(x) = 2x^3 + 3x^2 + 3x + 1 \text{coefficients are } [2, 3, 3, 1].$
- $A(x) = 2x^4 + 3x^3 + 3x^2 + 2x$ coefficients are [2, 3, 3, 2, 0].
- $A(x) = x^5 + x$ coefficients are [1, 0, 0, 0, 1, 0].

As a special case, the polynomial A(x) = 0 does not satisfy condition $a_d \neq 0$ and will not be accepted as an an answer.

Also note that you **do not** need to minimize the degree of the polynomial.