

Problem G. Palindromic Differences

Input file:standard inputOutput file:standard outputTime limit:2 secondsMemory limit:256 megabytes

Author: Dmytro Fedoriaka

For an array $a = [a_1, a_2, \dots, a_n]$, $n \ge 2$, its difference array is defined as $[a_2 - a_1, a_3 - a_2, \dots, a_n - a_{n-1}]$. The array $a = [a_1, a_2, \dots, a_n]$ is a palindrome if it doesn't change after being reversed.

A permutation of array a is an array which has the same elements as a, but possibly in a different order.

You are given an array a of length n. Find the number of distinct permutations of a whose difference array is a palindrome. Two arrays a and b of same length are distinct if and only if for some i, $a_i \neq b_i$.

As this number can be very large, print it modulo $10^9 + 9$.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 100$). The description of the test cases follows.

The first line of each test case contains an integer $n \ (2 \le n \le 5 \cdot 10^5)$ — the length of the array a.

The second line of each test case contains n integers $a_1, a_2, \ldots a_n$ $(-10^9 \le a_i \le 10^9)$.

It is guaranteed that the sum of n over all test cases does not exceed $5 \cdot 10^5$.

Output

For each test case, print a single number on a separate line – the answer to the test case modulo $10^9 + 9$.

Example

standard input	standard output
5	2
3	1
2 3 1	0
4	24
1 1 1 1	645120
3	
1 2 4	
7	
0 200 0 200 50 100 150	
14	
-1 0 1 2 3 4 5 6 7 8 9 10 11 12	

Note

In the first test case, the array [2,3,1] has six permutations: [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1]. Their difference arrays are [1,1], [2,-1], [-1,2], [1,-2], [-2,1], [-1,-1]. Of them only two are palindromes: [1,1], [-1,-1]. So, the only two permutations with palindromic difference arrays are [1,2,3] and [3,2,1].

In the second test case, there is only one permutation [1, 1, 1, 1]. Its difference array [0, 0, 0] is a palindrome. In the third test case, none of permutations has a palindromic difference array.