Problem G. Palindromic Differences

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
2 seconds
256 megabytes

For an array $a=\left[a_{1}, a_{2}, \ldots, a_{n}\right], n \geq 2$, its difference array is defined as $\left[a_{2}-a_{1}, a_{3}-a_{2}, \ldots, a_{n}-a_{n-1}\right]$. The array $a=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ is a palindrome if it doesn't change after being reversed.
A permutation of array a is an array which has the same elements as a, but possibly in a different order.
You are given an array a of length n. Find the number of distinct permutations of a whose difference array is a palindrome. Two arrays a and b of same length are distinct if and only if for some $i, a_{i} \neq b_{i}$.
As this number can be very large, print it modulo $10^{9}+9$.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 100)$. The description of the test cases follows.
The first line of each test case contains an integer $n\left(2 \leq n \leq 5 \cdot 10^{5}\right)$ - the length of the array a.
The second line of each test case contains n integers $a_{1}, a_{2}, \ldots a_{n}\left(-10^{9} \leq a_{i} \leq 10^{9}\right)$.
It is guaranteed that the sum of n over all test cases does not exceed $5 \cdot 10^{5}$.

Output

For each test case, print a single number on a separate line - the answer to the test case modulo $10^{9}+9$.

Example

standard input	standard output
5	2
3	1
231	0
4	24
1111	645120
3	
124	
7	
0200020050100150	
14	
$\begin{array}{llllllllllllllll}-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$	

Note

In the first test case, the array $[2,3,1]$ has six permutations: $[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2]$, $[3,2,1]$. Their difference arrays are $[1,1],[2,-1],[-1,2],[1,-2],[-2,1],[-1,-1]$. Of them only two are palindromes: $[1,1],[-1,-1]$. So, the only two permutations with palindromic difference arrays are $[1,2,3]$ and $[3,2,1]$.
In the second test case, there is only one permutation $[1,1,1,1]$. Its difference array $[0,0,0]$ is a palindrome. In the third test case, none of permutations has a palindromic difference array.

