The 1st Universal Cup Stage 7: Zaporizhzhia, March 11-12, 2023

Problem K. Determinant, or ...?

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

You're given an array $a_0, a_1, \ldots, a_{2^n-1}$.

Consider a $2^n \times 2^n$ matrix A such that $A_{ij} = a_{i|j}$, where i|j is the bitwise OR of the numbers i and j. Find the determinant of A.

Input

The first line of input contains a single integer n $(1 \le n \le 20)$.

The second line of input contains 2^n integers $a_0, a_1, \ldots, a_{2^n-1}$ $(0 \le a_i < 10^9 + 9)$.

Output

Print a single integer, the determinant of A modulo $10^9 + 9$.

Examples

standard input	standard output
1	6
5 2	
2	99999997
3 1 5 4	
3	47229676
53 37 42 42 84 37 66 8	

Note

In the first example, the determinant is

$$\begin{vmatrix} a_0 & a_1 \\ a_1 & a_1 \end{vmatrix} = \begin{vmatrix} 5 & 2 \\ 2 & 2 \end{vmatrix} = 10 - 4 = 6.$$

In the second example, the determinant is

$$\begin{vmatrix} 3 & 1 & 5 & 4 \\ 1 & 1 & 4 & 4 \\ 5 & 4 & 5 & 4 \\ 4 & 4 & 4 & 4 \end{vmatrix} = -12 \equiv 9999999997 \pmod{10^9 + 9}.$$