

Problem A. Ring Road

Input file:	standard input
Output file:	standard output
Time limit:	7 seconds
Memory limit:	1024 mebibytes

KOI City consists of N intersections and N-1 two-way roads. You can travel between two different intersections using only the given roads. In other words, the city's road network forms a tree structure. Roads are on a two-dimensional plane, and two roads do not intersect at locations other than the endpoints. Each road has an non-negative integer weight. This weight represents the time it takes to use the road.

KOI City was a small town until a few decades ago but began to expand rapidly as people arrived. In the midst of rapid expansion, the mayor had numbered the intersections between 1 and N for administrative convenience. The number system satisfies the following properties.

- Intersection 1 is the center of the city and is incident to at least 2 roads.
- The numbers assigned to intersections form one of the pre-orders of the tree rooted at intersection 1: for any subtree, the number of its root is the least number in that subtree.
- For each intersection, consider the lowest-numbered intersection among all adjacent (directly connected by road) intersections. When you list all adjacent intersections in a counterclockwise order starting from this intersection, the numbers go in increasing order.

With a large influx of people to KOI City, the traffic congestion problem has intensified. To solve this problem, the mayor connected the outermost cities with the *outer ring road*. Let $\{v_1, v_2, \ldots, v_k\}$ be the increasing sequence of numbers of all the intersections incident to exactly one road. For each $1 \le i \le k$, the mayor builds a two-way road between intersection v_i and intersection $v_{(i \mod k)+1}$. The weight of each road is a nonnegative integer w_i . Due to the nature of the numbering system, you can observe that the outer ring road can be added in a two-dimensional plane in a way such that two roads do not intersect at any location except at the endpoint.

You are trying to build a navigation system for KOI city. The navigation system should answer Q queries of the form (u, v). For each query, the navigation system should return the shortest time it takes to move from intersection u to intersection v. The time to move through a path equals the sum of the weights of edges in the path.

Given a road network structure, write a program that efficiently answers Q queries.

Input

The first line contains the number of intersections N in the KOI City $(4 \le N \le 100\,000)$.

Each of the next N-1 lines contains two space-separated integers p_i and c_i . They indicate that there is a two-way road with weight c_i connecting intersection p_i and intersection i+1 $(1 \le p_i \le i, 0 \le c_i \le 10^{12})$.

Let k be the number of intersections incident to exactly one road in the original tree, and let $\{v_1, v_2, \ldots, v_k\}$ be the increasing sequence of their numbers. On the next line, k space-separated integers w_1, w_2, \ldots, w_k are given. This indicates that the weight of the outer ring road connecting the intersection v_i and intersection $v_{(i \mod k)+1}$ is w_i $(0 \le w_i \le 10^{12})$.

The next line contains the number of queries Q $(1 \le Q \le 250\,000)$.

Each of the next Q lines contains two integers u and v denoting the intersections of interest $(1 \le u, v \le N$ and $u \ne v$).

Output

For each query, print a line with a single integer: the shortest time to move from u to v.

Examples

standard input	standard output
4	9
1 9	8
1 8	0
1 0	9
999	9
6	8
1 2	
1 3	
1 4	
1 7	
2 3	
2 4	
3 4	
standard input	standard output
	7
1 9	8
1 8	8
3.0	7
4 7	7
1 1	7
+ 1 2 C	
30	
8 /	
8 1	7
10 6	7
0 0 0 0 0 0	7
21	1
1 2	7
1 3	0
1 4	7
1 5	0
1 6	8
1 7	1
1 8	6
1 9	0
1 10	
1 11	
7 1	
0.2	
1 6	
27	
3 8	
4 9	
5 10	
6 11	

standard input	standard output
11	9
1 9	8
1 8	8
3 0	15
4 7	9
4 1	14
3 6	0
1 0	7
8 7	1
8 1	7
10 6	14
10000000000 100000000000	9
100000000000 100000000000	15
100000000000 100000000000	9
21	22
1 2	9
1 3	23
1 4	8
1 5	15
1 6	16
1 7	16
1 8	
1 9	
1 10	
1 11	
7 1	
8 2	
93	
10 4	
11 5	
1 6	
2 7	
3 8	
4 9	
5 10	
6 11	

Note

In the third sample, the line with w_1, w_2, \ldots, w_k (in red) is split into several lines for readability.

The picture on the left corresponds to the first sample. The picture on the right corresponds to the second and third samples.