Problem A. Ring Road

Input file:
Output file:
standard input
Time limit:
standard output
Memory limit
7 seconds
1024 mebibytes

KOI City consists of N intersections and $N-1$ two-way roads. You can travel between two different intersections using only the given roads. In other words, the city's road network forms a tree structure. Roads are on a two-dimensional plane, and two roads do not intersect at locations other than the endpoints. Each road has an non-negative integer weight. This weight represents the time it takes to use the road.

KOI City was a small town until a few decades ago but began to expand rapidly as people arrived. In the midst of rapid expansion, the mayor had numbered the intersections between 1 and N for administrative convenience. The number system satisfies the following properties.

- Intersection 1 is the center of the city and is incident to at least 2 roads.
- The numbers assigned to intersections form one of the pre-orders of the tree rooted at intersection 1: for any subtree, the number of its root is the least number in that subtree.
- For each intersection, consider the lowest-numbered intersection among all adjacent (directly connected by road) intersections. When you list all adjacent intersections in a counterclockwise order starting from this intersection, the numbers go in increasing order.

With a large influx of people to KOI City, the traffic congestion problem has intensified. To solve this problem, the mayor connected the outermost cities with the outer ring road. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the increasing sequence of numbers of all the intersections incident to exactly one road. For each $1 \leq i \leq k$, the mayor builds a two-way road between intersection v_{i} and intersection $v_{(i \bmod k)+1}$. The weight of each road is a nonnegative integer w_{i}. Due to the nature of the numbering system, you can observe that the outer ring road can be added in a two-dimensional plane in a way such that two roads do not intersect at any location except at the endpoint.

You are trying to build a navigation system for KOI city. The navigation system should answer Q queries of the form (u, v). For each query, the navigation system should return the shortest time it takes to move from intersection u to intersection v. The time to move through a path equals the sum of the weights of edges in the path.
Given a road network structure, write a program that efficiently answers Q queries.

Input

The first line contains the number of intersections N in the KOI City ($4 \leq N \leq 100000$).
Each of the next $N-1$ lines contains two space-separated integers p_{i} and c_{i}. They indicate that there is a two-way road with weight c_{i} connecting intersection p_{i} and intersection $i+1\left(1 \leq p_{i} \leq i, 0 \leq c_{i} \leq 10^{12}\right)$.
Let k be the number of intersections incident to exactly one road in the original tree, and let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be the increasing sequence of their numbers. On the next line, k space-separated integers $w_{1}, w_{2}, \ldots, w_{k}$ are given. This indicates that the weight of the outer ring road connecting the intersection v_{i} and intersection $v_{(i \bmod k)+1}$ is $w_{i}\left(0 \leq w_{i} \leq 10^{12}\right)$.
The next line contains the number of queries $Q(1 \leq Q \leq 250000)$.
Each of the next Q lines contains two integers u and v denoting the intersections of interest $(1 \leq u, v \leq N$ and $u \neq v$).

Output

For each query, print a line with a single integer: the shortest time to move from u to v.

Examples

	standard input	
4		9
1	9	8
1	8	0
1	0	9
9	9	9
6		9
1	2	8
1	3	
1	4	
2	3	
2	4	
3	4	

standard input	standard output
11	7
19	8
18	8
30	7
47	7
41	7
36	0
10	7
87	1
81	7
106	7
000000	7
21	1
12	7
13	0
14	7
15	0
16	8
17	1
18	6
19	0
110	
111	
71	
82	
93	
104	
115	
16	
27	
38	
49	
510	
611	

standard input	standard output
11	9
19	8
18	8
30	15
47	9
41	14
36	0
10	7
87	1
81	7
106	14
10000000000001000000000000	9
10000000000001000000000000	15
10000000000001000000000000	9
21	22
12	9
13	23
14	8
15	15
16	16
17	16
18	
19	
110	
111	
71	
82	
93	
104	
115	
16	
27	
38	
49	
510	
611	

Note

In the third sample, the line with $w_{1}, w_{2}, \ldots, w_{k}$ (in red) is split into several lines for readability.

The picture on the left corresponds to the first sample. The picture on the right corresponds to the second and third samples.

