

Problem B. Query on a Tree

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

You are given a tree where vertices are labeled with integers $1, 2, \ldots, N$.

For a subset of vertices $S \subseteq \{1, 2, ..., N\}$, we say two vertices (u, v) are *connected under* S if there exists a path that only passes through the vertices in S. Note that this includes endpoints of the path, so $u, v \in S$ should hold.

For example, consider the following tree and the set $S = \{1, 2, 3, 4, 5, 6\}$.

In this case, (1,2), (3,5) and (4,6) are connected under S, while (1,6) and (2,7) are not connected under S.

Let strength(S) be the number of pairs of vertices (u, v) such that $u \neq v$ and (u, v) are connected under S. You are given Q queries, where each query contains a set S. For each query, you should compute the quantity strength(S).

Input

The first line contains a single integer N, the number of vertices $(2 \le N \le 250\,000)$.

Each of the next N-1 lines contains two space-separated integers a and b: the vertices connected by an edge $(1 \le a, b \le N)$. Together, the edges form a tree.

The next line contains a single integer Q, the number of queries $(1 \le Q \le 100\,000)$.

Each of the next Q lines contains a query, denoted by space-separated integers. A query starts with an integer K, the size of the set $(1 \le K \le N)$. It is followed by K distinct integers from 1 to N in arbitrary order: the vertices of set S.

The sum of K in each test case is at most $1\,000\,000$.

Output

For each of the Q queries, print a single line with the integer strength(S) as defined above.

Example

standard input	standard output
7	0
1 2	1
1 3	3
1 5	10
2 7	7
4 6	21
4 7	
6	
1 1	
2 1 2	
4 1 2 3 4	
512467	
6 1 2 3 4 5 6	
7 1 2 3 4 5 6 7	