Problem B. Query on a Tree

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 mebibytes

You are given a tree where vertices are labeled with integers $1,2, \ldots, N$.
For a subset of vertices $S \subseteq\{1,2, \ldots, N\}$, we say two vertices (u, v) are connected under S if there exists a path that only passes through the vertices in S. Note that this includes endpoints of the path, so $u, v \in S$ should hold.

For example, consider the following tree and the set $S=\{1,2,3,4,5,6\}$.

In this case, $(1,2),(3,5)$ and $(4,6)$ are connected under S, while $(1,6)$ and $(2,7)$ are not connected under S.

Let $\operatorname{strength}(S)$ be the number of pairs of vertices (u, v) such that $u \neq v$ and (u, v) are connected under S. You are given Q queries, where each query contains a set S. For each query, you should compute the quantity strength (S).

Input

The first line contains a single integer N, the number of vertices ($2 \leq N \leq 250000$).
Each of the next $N-1$ lines contains two space-separated integers a and b : the vertices connected by an edge $(1 \leq a, b \leq N)$. Together, the edges form a tree.

The next line contains a single integer Q, the number of queries ($1 \leq Q \leq 100000$).
Each of the next Q lines contains a query, denoted by space-separated integers. A query starts with an integer K, the size of the set $(1 \leq K \leq N)$. It is followed by K distinct integers from 1 to N in arbitrary order: the vertices of set S.
The sum of K in each test case is at most 1000000 .

Output

For each of the Q queries, print a single line with the integer $\operatorname{strength}(S)$ as defined above.

Example

standard input	standard output
7	0
12	1
13	3
15	10
27	7
46	21
47	
6	
11	
212	
41234	
512467	
6123456	
71234567	

