Problem H. Permutation Arrangement

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
1 second
1024 mebibytes

You are given an array a of length N. Each element of a is either -1 or an integer between 1 and N. Each number between 1 and N appears at most once in a. Also, no two adjacent elements of a differ by exactly 1.

You are to find the lexicographically smallest permutation p of $\{1,2, \ldots, N\}$ satisfying the following.

- if $a_{i} \neq-1$, then $a_{i}=p_{i}(1 \leq i \leq N)$;
- $\left|p_{i}-p_{i+1}\right| \neq 1(1 \leq i \leq N-1)$.

Input

The first line contains one integer, N.
The second line contains space-separated N integers: elements of the array a.

- $1 \leq N \leq 200000$
- $1 \leq a_{i} \leq N$ or $a_{i}=-1(1 \leq i \leq N)$
- $a_{i} \neq a_{j}$ or $a_{i}=-1(1 \leq i<j \leq N)$
- $\left|a_{i}-a_{i+1}\right| \neq 1(1 \leq i \leq N-1)$

Output

If there is no permutation p satisfying the condition, then output a single integer -1 .
Otherwise, output the lexicographically smallest permutation p.

Examples

standard input	standard output
$\begin{array}{llllllllll} 10 & & & & & & & & \\ 3 & -1 & 10 & -1 & 8 & -1 & -1 & -1 & -1 & -1 \end{array}$	31102846957
$\begin{array}{ll} \hline 2 & \\ -1 & -1 \end{array}$	-1

