Problem K. Two Paths

You are given a tree T consisting of N vertices. Each edge has a positive integer weight. The weight of a path P in T is defined as the sum of weights of edges in P, denoted by $W(P)$.
You are given a total of Q queries, each containing two vertices, u and v, and two integers, A and B. For each query, you are to find two simple paths P_{1} and P_{2} in T satisfying the following requirements.

- P_{1} and P_{2} don't share a vertex.
- P_{1} starts from u, and P_{2} starts from v.
- Among all P_{1} and P_{2} satisfying the conditions above, the value of $A \cdot W\left(P_{1}\right)+B \cdot W\left(P_{2}\right)$ should be maximized.

You should output the value of $A \cdot W\left(P_{1}\right)+B \cdot W\left(P_{2}\right)$ for each query.

Input

The first line contains two space-separated integers N and Q.
Each of the following $N-1$ lines contains three space-separated integers u, v, w. This means that there is an edge in T connecting vertices u and v with weight w. Together these edges form a tree.

Each of the following Q lines contains four space-separated integers u, v, A, B, denoting a single query.

- $2 \leq N \leq 200000$
- $1 \leq Q \leq 500000$
- $1 \leq u<v \leq N$ for both edges and queries
- $1 \leq w \leq 10000$
- $1 \leq A, B \leq 2 \cdot 10^{9}$

Output

For each query, output a single line with an integer: the maximum possible value of $A \cdot W\left(P_{1}\right)+B \cdot W\left(P_{2}\right)$.

Example

			standard input		standard output
6	4			18	
1	2	4		18	
2	5	5		160	
2	3	7			
3	6	5			
3	4	4			
1	4	1	1		
1	4	2	1		
5	6	1	1		
5	6	1	10		

