

Problem C. Changing the Sequences

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

There are sequences $A = (a_1, \ldots, a_N)$ and $B = (b_1, \ldots, b_N)$ with the same length N. a_i denotes the *i*-th element of A, and its value is an integer between 1 and M, and the same is true for b_j , which is the *j*-th element of the sequence B.

You can do a magic trick to the sequence A only once: you can prepare a permutation $P = (p_1, \ldots, p_M)$ of integers from 1 through M, and can change the sequence A to A' by using P as follows: $a'_i = p_{a_i}$ $(1 \le i \le N)$.

You want to make the distance between the sequence A' and another sequence B closer by changing A to A' through a magic trick.

The *distance* between two sequences is defined as Hamming distance. The Hamming distance between two equal-length sequences is the number of positions at which the corresponding values are different.

Among all possible A', you have to find a sequence which satisfies all of the following conditions.

- No other possible sequences as A' have a smaller distance to B than the distance between this sequence and B.
- It is the lexicographically smallest sequence among possible sequences which has the same distance between B.

Here, a sequence $X = (x_1, x_2, ..., x_N)$ is "lexicographically smaller" than another same length sequence $Y = (y_1, y_2, ..., y_N)$ if and only if the following condition holds: there exists an index $i \ (1 \le i \le N)$, such that $x_j = y_j$ for all indices $j \ (1 \le j < i)$, and $x_i < y_i$.

Input

The first line of the input consists of two integers N ($1 \le N \le 100\,000$) and M ($1 \le M \le 60$), which represent that the length of sequences are N, and each sequence has N values between 1 and M.

The second line consists of N integers. The *i*-th integer is denoted a_i $(1 \le a_i \le M)$.

The third line consists of N integers. The -th integer is denoted b_i $(1 \le b_i \le M)$.

Output

Print N integers, with spaces in between. The *i*-th integer should be the *i*-th element of a sequence which satisfies all conditions in the problem statement. Each element of a sequence should be printed as an integer.

Examples

standard input	standard output
4 3	1 1 2 2
2 2 3 3	
2 2 2 2	
5 3	3 3 2 2 3
2 2 3 3 2	
2 2 2 2 3	