Problem J. JAG Graph Isomorphism

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Consider the JAG Graph as the undirected simple connected graph that consists of N vertices numbered from 1 to N and N edges.
Given two JAG graphs G and G^{\prime}. Are these graphs isomorphic? In other words, is there a permutation $\left(p_{1}, \ldots, p_{N}\right)$ of $(1, \ldots, N)$ such that G has an edge which connects two vertices u and v if and only if G^{\prime} has an edge which connects p_{u} and p_{v} ?

Input

The first line of the input contains a single integer $N\left(3 \leq N \leq 2 \times 10^{5}\right)$, which represents the number of vertices of graphs G and G^{\prime}. Each of the next N lines contains two integers a_{i} and $b_{i}\left(1 \leq a_{i}, b_{i} \leq N\right)$, which represent that there is an undirected edge connecting vertices a_{i} and b_{i} of G. Similarly, each of the next N lines contains two integers c_{i} and $d_{i}\left(1 \leq c_{i}, d_{i} \leq N\right)$, which represent that there is an undirected edge connecting vertices c_{i} and d_{i} of G^{\prime}. You can assume that both G and G^{\prime} are connected graphs and do not contain self-loops and double edges.

Output

Print "Yes" if G and G^{\prime} are isomorphic. Print "No", otherwise.

Examples

	standard input	
4		standard output
1	2	Yes
2	3	
2	4	
3	4	
1	2	
1	3	
1	4	
3	4	
4		
1	2	No
2	3	
3	4	
1	4	
1	2	
1	3	
1	4	
3	4	
6		
1	2	5
1	3	5
2	5	5
2	6	5
3	5	
4	6	
1	5	
1	6	
2	4	
2		

