Problem K. King Of Zombies

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 mebibytes

Tatsumi, the King of Zombies, planned to form a zombie rock band named Gray Faces in the ICPC-city, and still plans to do so.

But unfortunately, once again, there is only one zombie in ICPC-city. So Tatsumi decided to release the zombie into the city after enhancing the zombie's infectious power, to produce a sufficient number of zombies. The infectious zombie changes a human into a new infectious zombie when the distance between the human and the zombie is less than or equal to D. Note that a zombie that was a human also changes a human into a zombie.

The ICPC-city is represented by an infinitely large two-dimensional plane, and Tatsumi will release the zombie at a point with a coordinate $\left(x_{0}, y_{0}\right)$. After the release, the zombie will start walking at a speed of $\left(v_{x, 0}, v_{y, 0}\right)$ per second. There are also N humans on the two-dimensional plane. When Tatsumi releases the zombie, the i-th human will be at a point with a coordinate $\left(x_{i}, y_{i}\right)$ and will start walking at a speed of $\left(v_{x, i}, v_{y, i}\right)$ per second. Humans will not change their walking direction or speed when they become zombies.

For each human, Tatsumi wants to know when the human becomes a zombie. Please help him by writing a program that calculates a time when each human becomes a zombie.

Input

The first line of the input contains two integers N and $D\left(1 \leq N \leq 10^{3}, 0 \leq D \leq 10^{4}\right)$ separated by a space, which represent the number of humans and the distance to be infected. The following line contains four integers $x_{0} y_{0} v_{x, 0}$ and $v_{y, 0}\left(-10^{4} \leq x_{0}, y_{0}, v_{x, 0}, v_{y, 0} \leq 10^{4}\right)$ separated by a space, which represent the initial position and direction of the zombie. Each of the next N lines contains four integers $x_{i}, y_{i}, v_{x, i}$ and $v_{y_{i}}\left(-10^{4} \leq x_{i}, y_{i}, v_{x, i}, v_{y, i} \leq 10^{4}\right)$ separated by a space, which represent the initial position and direction of the i-th human.

Output

The output consists of N lines. In the i-th line, print the time when the i-th human becomes a zombie. If the i-th human will never become a zombie, print -1 instead. The answer will be considered as correct if the values output have an absolute or relative error less than 10^{-7}.

Examples

standard input	standard output
53	2.62622655215
0030	0
$10 \quad 10 \quad 0 \quad-3$	3
$\begin{array}{lllll}1 & 1 & -1 & -1\end{array}$	-1
$\begin{array}{lllll}16 & 1 & -1 & 0\end{array}$	14.2857142857
100100100100	
-100-3 100	
410	0
0000	0
10000	0
20000	-1
30000	
41000	

