Problem C. Flippy Sequence

Input file: standard input
Output file: standard output
Time limit: $\quad 1$ second
Memory limit: 256 megabytes

DreamGrid has just found two binary sequences $s_{1}, s_{2}, \ldots, s_{n}$ and $t_{1}, t_{2}, \ldots, t_{n}\left(s_{i}, t_{i} \in\{0,1\}\right.$ for all $1 \leq i \leq n$) from his virtual machine! He would like to perform the operation described below exactly twice, so that $s_{i}=t_{i}$ holds for all $1 \leq i \leq n$ after the two operations.
The operation is: Select two integers l and $r(1 \leq l \leq r \leq n)$, change s_{i} to $\left(1-s_{i}\right)$ for all $l \leq i \leq r$.
DreamGrid would like to know the number of ways to do so.
We use the following rules to determine whether two ways are different:

- Let $A=\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, where $1 \leq a_{1} \leq a_{2} \leq n, 1 \leq a_{3} \leq a_{4} \leq n$, be a valid operation pair denoting that DreamGrid selects integers a_{1} and a_{2} for the first operation and integers a_{3} and a_{4} for the second operation;
- Let $B=\left(b_{1}, b_{2}, b_{3}, b_{4}\right)$, where $1 \leq b_{1} \leq b_{2} \leq n, 1 \leq b_{3} \leq b_{4} \leq n$, be another valid operation pair denoting that DreamGrid selects integers b_{1} and b_{2} for the first operation and integers b_{3} and b_{4} for the second operation.
- A and B are considered different, if there exists an integer $k(1 \leq k \leq 4)$ such that $a_{k} \neq b_{k}$.

Input

There are multiple test cases. The first line of the input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 10^{6}\right)$, indicating the length of two binary sequences.
The second line contains a string $s_{1} s_{2} \ldots s_{n}\left(s_{i} \in\left\{{ }^{\prime} 0,{ }^{\prime},{ }^{\prime}\right\}\right.$) of length n, indicating the first binary sequence. The third line contains a string $t_{1} t_{2} \ldots t_{n}\left(t_{i} \in\left\{{ }^{\prime} 0^{\prime},{ }^{\prime} 1\right.\right.$ ' $\}$) of length n, indicating the second binary sequence. It's guaranteed that the sum of n in all test cases will not exceed 10^{7}.

Output

For each test case, output an integer denoting the answer.

Example

	standard input	standard output
3	0	
1	2	
1	6	
0		
00		
11		
5		
00111		

Note

For the second sample test case, there are two valid operation pairs: $(1,1,2,2)$ and $(2,2,1,1)$.

For the third sample test case, there are six valid operation pairs: $(2,3,5,5),(5,5,2,3),(2,5,4,4)$, $(4,4,2,5),(2,4,4,5)$ and $(4,5,2,4)$.

