

Problem I. Interval Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given n intervals $[l_i, r_i]$. If two intervals intersect, add an undirected, unweighted edge between them.

Let d(i, j) be the length of the shortest path between the *i*-th interval and the *j*-th interval. If there is no path from *i* to *j*, d(i, j) = 0.

For i = 1, 2, ..., n, output $\sum_{j=1}^{n} d(i, j)$.

Input

In the first line, $n \ (1 \le n \le 2 \times 10^5)$.

In the following n lines, l_i, r_i $(1 \leq l_i < r_i \leq 2n)$. It's guaranteed that the endpoints of intervals are distinct.

Output

n lines, the answer of $i = 1, 2, \ldots, n$.

Example

standard input	standard output
5	7
2 3	5
6 7	4
1 9	5
5 10	5
4 8	