## Problem I. Interval Problem

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 1024 megabytes |

You are given $n$ intervals $\left[l_{i}, r_{i}\right]$. If two intervals intersect, add an undirected, unweighted edge between them.

Let $d(i, j)$ be the length of the shortest path between the $i$-th interval and the $j$-th interval. If there is no path from $i$ to $j, d(i, j)=0$.
For $i=1,2, \ldots, n$, output $\sum_{j=1}^{n} d(i, j)$.

## Input

In the first line, $n\left(1 \leq n \leq 2 \times 10^{5}\right)$.
In the following $n$ lines, $l_{i}, r_{i}\left(1 \leq l_{i}<r_{i} \leq 2 n\right)$. It's guaranteed that the endpoints of intervals are distinct.

## Output

$n$ lines, the answer of $i=1,2, \ldots, n$.

## Example

|  | standard input |  | standard output |
| :--- | :--- | :--- | :--- |
| 5 | 3 | 7 |  |
| 2 | 7 | 5 |  |
| 1 | 9 | 4 |  |
| 5 | 10 | 8 | 5 |

