Problem J. Junk Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given a grid graph with n rows and m columns. Most edges are directed, which means you can walk from (x, y) to $(x+1, y)$ or $(x, y+1)$. k horizontal edges are bidirectional, which means you can walk from (x, y) to $(x, y+1)$, and $(x, y+1)$ to (x, y) too. It's guaranteed that there is no pair of bidirectional edges that share an endpoint.

You need to find l vertex-disjoint simple paths, where the i-th is from $\left(1, a_{i}\right)$ to $\left(n, b_{i}\right)$. For a set of paths, we call a bidirectional edge bad if neither of its endpoints is visited by any of the paths in this set.
Output the number of all l vertex-disjoint simple paths without any bad edges, modulo 998244353.

Input

In the first line, $n, m, l, k(2 \leq n, m \leq 100,1 \leq l \leq 50,0 \leq k \leq 50)$.
In the second line, $a_{1}, a_{2}, \ldots, a_{l}\left(1 \leq a_{1}<a_{2}<\cdots<a_{l} \leq m\right)$.
In the third line, $b_{1}, b_{2}, \ldots, b_{l}\left(1 \leq b_{1}<b_{2}<\cdots<b_{l} \leq m\right)$.
In the following k lines, $x_{i}, y_{i}\left(1 \leq x_{i} \leq n, 1 \leq y_{i}<m\right)$ each line, which denote that the edge (x_{i}, y_{i}) to $\left(x_{i}, y_{i}+1\right)$ is bidirectional.
It's guaranteed that there is no pair of bidirectional edges that share an endpoint.

Output

One integer - the answer.

Examples

		standard input		standard output
2	2	1	2	2
2				
1				
1	1			
2	1			
3	4	2	1	
1	4		388035318	
1	4			
2	2			
10	10	3	4	
1	2	3		
8	9	10		
2	3			
2	5			
4	6			
7	8			

