## I Inquiry II

For an undirected, simple graph $G=(V, E)$ we call a subset $V^{\prime} \subseteq V$ an independent set if no two elements of $V^{\prime}$ are connected by an edge. An independent set of $G$ is called a maximum independent set if there is no independent set in $G$ with strictly more vertices. Given a specific kind of connected graph $G$, find the size of a maximum independent set of $G$.

## Input

- The input starts with one line, containing integers $n(1 \leq n \leq 100)$, the number of vertices in the graph, and $m(n-1 \leq m \leq n+15)$, the number of edges in the graph.
- Then follow $m$ lines, each containing integers $a, b(1 \leq a, b \leq n)$ indicating that there is an edge between vertices $a$ and $b$.

The graph given by this input is guaranteed to be both simple and connected: there is at most one edge between each pair of vertices, there are no loops, and there is a path between each pair of vertices.

## Output

- Output the number of vertices in a maximum independent set of the input graph.

\left.| Sample Input 1 | Sample Output 1 |
| :--- | :--- |
| 2 | 1 |
| 1 | 2 |$\right] 1$


\left.| Sample Input 2 | Sample Output 2 |
| :--- | :--- |
| 4 | 5 |
| 1 | 2 |
| 2 | 3 |
| 3 | 4 |
| 4 | 1 |$\right] 2$

