I Inquiry II

Time limit: 5s

For an undirected, simple graph G = (V, E) we call a subset $V' \subseteq V$ an *independent set* if no two elements of V' are connected by an edge. An independent set of G is called a *maximum independent set* if there is no independent set in G with strictly more vertices. Given a specific kind of connected graph G, find the size of a maximum independent set of G.

Input

- The input starts with one line, containing integers n $(1 \le n \le 100)$, the number of vertices in the graph, and m $(n-1 \le m \le n+15)$, the number of edges in the graph.
- Then follow m lines, each containing integers $a, b \ (1 \le a, b \le n)$ indicating that there is an edge between vertices a and b.

The graph given by this input is guaranteed to be both simple and connected: there is at most one edge between each pair of vertices, there are no loops, and there is a path between each pair of vertices.

Output

• Output the number of vertices in a maximum independent set of the input graph.

Sample Input 1	Sample Output 1
2 1	1
1 2	

Sample Input 2	Sample Output 2
4 5	2
1 2	
2 3	
3 4	
4 1	
1 3	