Coloring

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

You are given n elements numbered from 1 to n. Element i has value w_i and color c_i . Each element also has a pointer a_i to some other element.

Initially, the color of element s is 1, while the color of all the other elements is 0. More formally, $c_s = 1$ and $c_i = 0$ for all $i \neq s$ $(1 \leq i \leq n)$.

You can perform the following operation for any number of times:

• Assign $c_i \leftarrow c_{a_i}$ at a cost of p_i .

Your score is equal to the sum of values of all the elements with color 1 after the operations minus the sum of costs of the operations.

Find the maximum possible score you can obtain.

Input

The first line contains two integers n, s $(1 \le s \le n \le 5 \times 10^3)$ — the number of elements and the element with color 1 initially.

The second line contains n integers w_1, w_2, \ldots, w_n $(-10^9 \le w_i \le 10^9)$ — the value of the elements.

The third line contains n integers p_1, p_2, \ldots, p_n $(0 \le p_i \le 10^9)$ — the cost of changing the color of each element.

The fourth line contains n integers a_1, a_2, \ldots, a_n $(1 \le a_i \le n, a_i \ne i)$.

Output

Output one integer representing the answer in one line.

Examples

standard input	standard output
3 1	1
-1 -1 2	
1 0 0	
3 1 2	
10 8	35343360
36175808 53666444 14885614 -14507677	
-92588511 52375931 -87106420 -7180697	
-158326918 98234152	
17550389 45695943 55459378 18577244	
93218347 64719200 84319188 34410268	
20911746 49221094	
8122884784	
(There won't be extra line breakers	
in the actual test cases.)	

Note

In the first sample, you can successively perform the following operations:

- 1. Assign $c_2 \leftarrow c_{a_2}$ at a cost of p_2 , then c = [1, 1, 0];
- 2. Assign $c_1 \leftarrow c_{a_1}$ at a cost of p_1 , then c = [0, 1, 0];
- 3. Assign $c_3 \leftarrow c_{a_3}$ at a cost of p_3 , then c = [0, 1, 1];
- 4. Assign $c_2 \leftarrow c_{a_2}$ at a cost of p_2 , then c = [0, 0, 1].

After the operations, only the color of element 3 is 1, so your score is equal to $w_3 - (p_2 + p_1 + p_3 + p_2) = 1$. It can be shown that it is impossible to obtain a score greater than 1.