Minimum Suffix

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 megabytes

For a string s of length n, we define $p_{j}=x$ if $s[x \ldots j]$ is the minimum suffix of $s[1 \ldots j]$, for all $j=1, \ldots, n$. (A suffix is the minimum suffix of a string if it is lexicographically smaller than any other suffix of that string.)
You are to recover s from p_{1}, \ldots, p_{n}. If there are multiple answers, find the lexicographically smallest one.

Input

The first line contains a single integer $T\left(1 \leq T \leq 10^{5}\right)$ representing the number of test cases.
For each test case, the first line contains a single integer $n\left(1 \leq n \leq 3 \times 10^{6}\right)$ representing the length of s. The next line contains n integers $p_{1}, \ldots, p_{n}\left(1 \leq p_{i} \leq i\right.$ for all $\left.1 \leq i \leq n\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 3×10^{6}.

Output

For each test case, output one line. If there is no solution, output -1 . Otherwise, output the lexicographically smallest s. Characters of s are represented by positive integers. Smaller integers represent smaller characters in the lexicographical order.

Example

standard input	standard output
6	122
3	-1
111	121
3	112
112	212
3	111
113	
3	
121	
3	
122	
3	
123	

Note

As the input/output can be huge, it is recommended to use fast input/output methods.

