Minimum Suffix

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	1024 megabytes

For a string s of length n, we define $p_j = x$ if $s[x \dots j]$ is the minimum suffix of $s[1 \dots j]$, for all $j = 1, \dots, n$. (A suffix is the minimum suffix of a string if it is lexicographically smaller than any other suffix of that string.)

You are to recover s from p_1, \ldots, p_n . If there are multiple answers, find the lexicographically smallest one.

Input

The first line contains a single integer T $(1 \le T \le 10^5)$ representing the number of test cases.

For each test case, the first line contains a single integer n $(1 \le n \le 3 \times 10^6)$ representing the length of s. The next line contains n integers p_1, \ldots, p_n $(1 \le p_i \le i \text{ for all } 1 \le i \le n)$.

It is guaranteed that the sum of n over all test cases does not exceed 3×10^6 .

Output

For each test case, output one line. If there is no solution, output -1. Otherwise, output the lexicographically smallest s. Characters of s are represented by positive integers. Smaller integers represent smaller characters in the lexicographical order.

Example

standard input	standard output
6	1 2 2
3	-1
1 1 1	1 2 1
3	1 1 2
1 1 2	2 1 2
3	1 1 1
1 1 3	
3	
1 2 1	
3	
1 2 2	
3	
1 2 3	

Note

As the input/output can be huge, it is recommended to use fast input/output methods.