Inversion

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

This is an interactive problem.

There is a hidden permutation p_1, p_2, \ldots, p_n of $\{1, 2, \ldots, n\}$. You want to find it by asking the parity of the number of inversions of p_l, \ldots, p_r .

You can query in the format "? l r", and the interactor will respond you $\left(\sum_{l \leq i < j \leq r} [p_i > p_j]\right) \mod 2$. $[p_i > p_j]$ is 1 when $p_i > p_j$ and 0 when $p_i \leq p_j$.

Interaction Protocol

Firstly, you should read the integer $n \ (1 \le n \le 2000)$.

After that, you can make no more than 4×10^4 queries. To make a query, output "? l r" $(1 \le l \le r \le n)$ on a separate line, then you should read the response from standard input.

To give your answer, print "! $p_1 p_2 \ldots p_n$ " on a separate line. The output of the answer is **not** counted towards the limit of 4×10^4 queries.

After that, your program should terminate.

After printing a query, do not forget to output end of line and flush the output. To do this, use fflush(stdout) or cout.flush() in C++, System.out.flush() in Java, flush(output) in Pascal, or stdout.flush() in Python.

It is guaranteed that the permutation is fixed in advance.

Example

standard input	standard output
3	? 1 2
0	? 1 3
0	? 2 3
1	! 2 3 1