Inversion

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

This is an interactive problem.
There is a hidden permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $\{1,2, \ldots, n\}$. You want to find it by asking the parity of the number of inversions of p_{l}, \ldots, p_{r}.
You can query in the format "? $l r$ ", and the interactor will respond you $\left(\sum_{l \leq i<j \leq r}\left[p_{i}>p_{j}\right]\right) \bmod 2$. [$p_{i}>p_{j}$] is 1 when $p_{i}>p_{j}$ and 0 when $p_{i} \leq p_{j}$.

Interaction Protocol

Firstly, you should read the integer $n(1 \leq n \leq 2000)$.
After that, you can make no more than 4×10^{4} queries. To make a query, output "? $l r$ " $(1 \leq l \leq r \leq n)$ on a separate line, then you should read the response from standard input.

To give your answer, print "! $p_{1} p_{2} \ldots p_{n}$ " on a separate line. The output of the answer is not counted towards the limit of 4×10^{4} queries.
After that, your program should terminate.
After printing a query, do not forget to output end of line and flush the output. To do this, use fflush(stdout) or cout.flush() in C++, System.out.flush() in Java, flush(output) in Pascal, or stdout.flush() in Python.

It is guaranteed that the permutation is fixed in advance.

Example

| standard input | | standard output |
| :--- | :--- | :--- | :--- |
| 3 | $?$ 1 2
 0 $?$ 1 3 | |
| 1 | $? 23$ | |

