Rectangle

Input file:
standard input
Output file: standard output
Time limit: 8 seconds
Memory limit: 1024 megabytes
Prof. Pang has n rectangles, the coordinate of the lower left corner of the i-th rectangle is ($x_{i, 1}, y_{i, 1}$), and the coordinate of the upper right corner is $\left(x_{i, 2}, y_{i, 2}\right)$. Rectangles may overlap.
You need to choose three straight lines such that:

- Each line should be parallel to the x-axis or the y-axis, which means its formula is $x=a$ or $y=a$.
- In the formula $x=a$ or $y=a, a$ should be an integer in $\left[1,10^{9}\right]$.
- These three lines should be distinct.
- Each rectangle is touched by at least one line. A line touches a rectangle if it intersects with the boundary and/or the interior of the rectangle.

You need to compute the number of ways to choose three lines. Since the answer can be very large, output it modulo 998244353 . Two ways are considered the same if only the order of three lines differs in these two ways.

Input

The first line contains a single integer $T\left(1 \leq T \leq 10^{5}\right)$, denoting the number of test cases.
For each test case, the first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$. The i-th line of the next n lines contains four integers $x_{i, 1}, y_{i, 1}, x_{i, 2}, y_{i, 2}\left(1 \leq x_{i, 1}<x_{i, 2} \leq 10^{9}, 1 \leq y_{i, 1}<y_{i, 2} \leq 10^{9}\right)$.
It is guaranteed that the sum of n over all test cases does not exceed 2×10^{5}.

Output

For each test case, output one integer representing the answer in one line.

Example

standard input	standard output
3	230616300
1	64
1110000000001000000000	977066618
3	
1122	
3344	
5566	
5	
58157411647617804999010750826131769	
223840663366320907613364068926991396	
26763083251913575488301124223957497	
217461197492085159999485867913732845	
28144453603781668912516656993160442	

