Magic

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	16 megabytes

Warning: Unusual memory limit!

You are given a sequence a_0, \ldots, a_{2n} . Initially, all numbers are zero.

There are *n* operations. The *i*-th operation is represented by two integers l_i, r_i $(1 \leq l_i < r_i \leq 2n, 1 \leq i \leq n)$, which assigns *i* to $a_{l_i}, \ldots, a_{r_i-1}$. It is guaranteed that all the 2*n* integers, $l_1, l_2, \ldots, l_n, r_1, r_2, \ldots, r_n$, are distinct.

You need to perform each operation exactly once, in arbitrary order.

You want to maximize the number of $i \ (0 \le i < 2n)$ such that $a_i \ne a_{i+1}$ after all n operations. Output the maximum number.

Input

The first line contains an integer $n \ (1 \le n \le 5 \times 10^3)$.

The *i*-th line of the next *n* lines contains a pair of integers l_i, r_i $(1 \le l_i < r_i \le 2n)$. It is guaranteed that all the 2*n* integers, $l_1, l_2, \ldots, l_n, r_1, r_2, \ldots, r_n$, are distinct.

Output

Output one integer representing the answer in one line.

Example

standard input	standard output
5	9
2 3	
6 7	
1 9	
5 10	
4 8	