Magic

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	16 megabytes

Warning: Unusual memory limit!

You are given a sequence $a_{0}, \ldots, a_{2 n}$. Initially, all numbers are zero.
There are n operations. The i-th operation is represented by two integers l_{i}, r_{i} $\left(1 \leq l_{i}<r_{i} \leq 2 n, 1 \leq i \leq n\right)$, which assigns i to $a_{l_{i}}, \ldots, a_{r_{i}-1}$. It is guaranteed that all the $2 n$ integers, $l_{1}, l_{2}, \ldots, l_{n}, r_{1}, r_{2}, \ldots, r_{n}$, are distinct.

You need to perform each operation exactly once, in arbitrary order.
You want to maximize the number of $i(0 \leq i<2 n)$ such that $a_{i} \neq a_{i+1}$ after all n operations. Output the maximum number.

Input

The first line contains an integer $n\left(1 \leq n \leq 5 \times 10^{3}\right)$.
The i-th line of the next n lines contains a pair of integers $l_{i}, r_{i}\left(1 \leq l_{i}<r_{i} \leq 2 n\right)$. It is guaranteed that all the $2 n$ integers, $l_{1}, l_{2}, \ldots, l_{n}, r_{1}, r_{2}, \ldots, r_{n}$, are distinct.

Output

Output one integer representing the answer in one line.

Example

	standard input	standard output
5		9
2	3	
6	7	
1	9	
5	10	8

