Parallel Processing (Hard)

Input file: standard input
Output file: standard output
Time limit: 2 seconds
Memory limit: 1024 megabytes
This is the hard version of the problem. The only difference between two versions is the constraint of N. You are given a mysterious monoid (M, \oplus) and 4 CPUs to compute it.

Compute the cumulative \oplus of a sequence $A=\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ of M in parallel using 4 CPUs, minimizing the number of operations.

Statement

You are given an integer N. Write a program in a custom language to do the following and minimize the number of instructions in your program.

Specification

This program can handle 2004 variables $A[1], A[2], \ldots, A[2000], C_{1}, C_{2}, C_{3}, C_{4}$. Each variable can hold a sequence of integers, and $A[i](1 \leq i \leq 2000)$ is initialized to $A[i]=(i)$. (Here (i) denotes an integer sequence consisting of one i.)
At the end of the execution, the following condition must be satisfied:

- For each of $i=1,2, \ldots, N, A[i]=(1,2, \ldots, i)$ holds.

Format

The first line of the program contains an integer L representing the number of instructions in the program. The L instructions are written in 4 lines per instruction from the 2 nd to the $(4 L+1)$-th lines, and are executed sequentially from top to bottom.

Each instruction is written as 12 integers $c_{1}, a_{1}, b_{1}, c_{2}, a_{2}, b_{2}, c_{3}, a_{3}, b_{3}, c_{4}, a_{4}, b_{4}$, where each integer must be between 1 and 2000 (inclusive).
For each instruction, the following operations are performed in order:

1. Assigns concat $\left(A\left[a_{1}\right], A\left[b_{1}\right]\right)$ to C_{1}.
2. Assigns concat $\left(A\left[a_{2}\right], A\left[b_{2}\right]\right)$ to C_{2}.
3. Assigns concat $\left(A\left[a_{3}\right], A\left[b_{3}\right]\right)$ to C_{3}.
4. Assigns concat $\left(A\left[a_{4}\right], A\left[b_{4}\right]\right)$ to C_{4}.
5. Assigns C_{1} to $A\left[c_{1}\right]$.
6. Assigns C_{2} to $A\left[c_{2}\right]$.
7. Assigns C_{3} to $A\left[c_{3}\right]$.
8. Assigns C_{4} to $A\left[c_{4}\right]$.

Here, concat (x, y) denotes the sequence obtained by concatenating the sequences x and y in that order.

Input

The input is given in the following format:

N

- All values in the input are integers.
- $17 \leq N \leq 1000$

Output

Let L be the minimum number of instructions. Output in the following format:

```
L
op
op
\vdots
op
\(\mathrm{op}_{i}(1 \leq i \leq L)\) represents the \(i\)-th operation and should be output in the following format:
\[
\begin{array}{lll}
c_{1} & a_{1} & b_{1} \\
c_{2} & a_{2} & b_{2} \\
c_{3} & a_{3} & b_{3} \\
c_{4} & a_{4} & b_{4}
\end{array}
\]
```

Here, each integer must be between 1 and 2000.

