Peaceful Results

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

Alice, Bob, and Chris will play rock-paper-scissors N times. However, each of them has the following restrictions on what hand they can play:

- Alice must play rock exactly A_{R} times, paper exactly A_{P} times, and scissors exactly A_{S} times.
- Bob must play rock exactly B_{R} times, paper exactly B_{P} times, and scissors exactly B_{S} times.
- Chris must play rock exactly C_{R} times, paper exactly C_{P} times, and scissors exactly C_{S} times.

Alice, Bob, and Chris are very good friends, so they want to make sure that they tie every single game over the N rounds. Count the number of ways to choose the hands of the three players for the N rounds that achieves this, modulo 998244353.

Input

The input is given from Standard Input in the following format:

$$
\begin{array}{llll}
\hline N \\
A_{R} & A_{P} & A_{S} \\
B_{R} & B_{P} & B_{S} \\
C_{R} & C_{P} & C_{S} \\
\hline
\end{array}
$$

- All values in the input are integers.
- $1 \leq N \leq 1.5 \times 10^{6}$
- $0 \leq A_{R}, A_{P}, A_{S}, B_{R}, B_{P}, B_{S}, C_{R}, C_{P}, C_{S} \leq 1.5 \times 10^{6}$
- $A_{R}+A_{P}+A_{S}=B_{R}+B_{P}+B_{S}=C_{R}+C_{P}+C_{S}=N$

Output

Output the answer.

Examples

standard input	standard output
2	2
200	
110	
101	
3	0
012	
300	
111	
333333	383902959
111111111111111111	
111111111111111111	
111111111111111111	

