Count Arithmetic Progression

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

You are given two sequences of integers $L=\left(L_{1}, L_{2}, \ldots, L_{N}\right)$ and $R=\left(R_{1}, R_{2}, \ldots, R_{N}\right)$, find the number of sequences $A=\left(A_{1}, A_{2}, \ldots, A_{N}\right)$ of integers that satisfy the following conditions, modulo 998244353:

- For all integers i such that $1 \leq i \leq N, L_{i} \leq A_{i} \leq R_{i}$ holds.
- Let $d=A_{2}-A_{1}$. For all integers i such that $1 \leq i \leq N-1, A_{i+1}-A_{i}=d$ holds.

Input

The input is given from Standard Input in the following format:

| N | | | |
| :--- | :--- | :--- | :--- | :--- |
| L_{1} | L_{2} | \cdots | L_{N} |
| R_{1} | R_{2} | \cdots | R_{N} |

- All values in the input are integers.
- $2 \leq N \leq 3 \times 10^{5}$
- $1 \leq L_{i} \leq R_{i} \leq 10^{12}(1 \leq i \leq N)$

Output

Print the number of sequences A that satisfy the conditions, modulo 998244353 .

Examples

	standard input		standard output	
3			6	
5	5	2		
7	6	7		0
4				
2	3	1	6	
5	6	4	8	

Note

In the first example, there are 6 sequences that satisfy the conditions: $(5,5,5),(5,6,7),(6,5,4),(6,6,6)$, $(7,5,3),(7,6,5)$.

