Colorful Graph

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
8 seconds
64 megabytes

You are given a directed graph with N vertices and M edges. The vertices are numbered from 1 to N, and the edges are numbered from 1 to M. Edge $i(1 \leq i \leq M)$ goes from vertex A_{i} to vertex B_{i}.
Your task is to color each vertex of the graph with one of the colors $1, \ldots, N$ in such a way that the following conditions are satisfied:

- For each vertex $i(1 \leq i \leq N)$, let c_{i} be the color assigned to it. For any pair $(i, j)(1 \leq i<j \leq N)$ such that $c_{i}=c_{j}$, there exists a path from vertex i to vertex j or from vertex j to vertex i (or both).
- The value of $\max \left\{c_{1}, \ldots, c_{N}\right\}$ is as small as possible.

Construct one coloring that satisfies these conditions.

Input

The input is given from Standard Input in the following format:

| M
 A_{1} B_{1}
 A_{2} B_{2}
 \vdots
 A_{M} B_{M} |
| :--- | :--- | :--- |

- All values in the input are integers.
- $1 \leq N \leq 7 \times 10^{3}$
- $0 \leq M \leq 7 \times 10^{3}$
- $1 \leq A_{i}, B_{i} \leq N(1 \leq i \leq M)$
- $A_{i} \neq B_{i}(1 \leq i \leq M)$
- $\left(A_{i}, B_{i}\right) \neq\left(A_{j}, B_{j}\right)(1 \leq i<j \leq M)$

Output

Output the color assignment $c_{1}, c_{2}, \ldots, c_{N}$ that satisfies these conditions.

Examples

standard input	standard output
$\begin{array}{ll} 5 & 5 \\ 1 & 4 \\ 2 & 3 \\ 1 & 3 \\ 2 & 5 \\ 5 & 1 \end{array}$	21122
$\begin{array}{ll} \hline 5 & 7 \\ 1 & 2 \\ 2 & 1 \\ 4 & 3 \\ 5 & 1 \\ 5 & 4 \\ 4 & 1 \\ 4 & 5 \end{array}$	22111
$\begin{array}{\|ll\|} \hline 8 & 6 \\ 6 & 1 \\ 3 & 4 \\ 3 & 6 \\ 2 & 3 \\ 4 & 1 \\ 6 & 4 \end{array}$	44443421

Note

The memory limit for this problem is 64 MB .

