Colorful Graph

Input file:	standard input
Output file:	standard output
Time limit:	8 seconds
Memory limit:	64 megabytes

You are given a directed graph with N vertices and M edges. The vertices are numbered from 1 to N, and the edges are numbered from 1 to M. Edge i $(1 \le i \le M)$ goes from vertex A_i to vertex B_i .

Your task is to color each vertex of the graph with one of the colors $1, \ldots, N$ in such a way that the following conditions are satisfied:

- For each vertex i $(1 \le i \le N)$, let c_i be the color assigned to it. For any pair (i, j) $(1 \le i < j \le N)$ such that $c_i = c_j$, there exists a path from vertex i to vertex j or from vertex j to vertex i (or both).
- The value of $\max\{c_1, \ldots, c_N\}$ is as small as possible.

Construct one coloring that satisfies these conditions.

Input

The input is given from Standard Input in the following format:

N M $A_1 B_1$ $A_2 B_2$ \vdots $A_M B_M$

- All values in the input are integers.
- $1 \le N \le 7 \times 10^3$
- $0 \le M \le 7 \times 10^3$
- $1 \le A_i, B_i \le N \ (1 \le i \le M)$
- $A_i \neq B_i \ (1 \le i \le M)$
- $(A_i, B_i) \neq (A_j, B_j) \ (1 \le i < j \le M)$

Output

Output the color assignment c_1, c_2, \ldots, c_N that satisfies these conditions.

Examples

standard input	standard output
5 5	2 1 1 2 2
1 4	
2 3	
1 3	
2 5	
5 1	
5 7	2 2 1 1 1
1 2	
2 1	
4 3	
5 1	
54	
4 1	
4 5	
86	4 4 4 4 3 4 2 1
6 1	
3 4	
3 6	
2 3	
4 1	
6 4	

Note

The memory limit for this problem is 64 MB.