Problem C. Record Parity

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given a permutation of length n and an integer k.
An element is called a record if it is strictly greater than all the elements before it.
Calculate the sum of $(-1)^{l e n}$ over all subsequences that have exactly k records. Here len is the number of elements in the subsequence. Since the answer can be large, calculate it modulo 998244353.

Input

The first line contains two integers n and $k\left(1 \leq k \leq n \leq 10^{6}\right)$.
The second line contains the permutation $p_{1}, p_{2}, \ldots, p_{n}$.

Output

I'll let you guess this one.

Examples

			standard input		standard output		
5	2				3		
4	1	2	5	3		998244318	
7	3						
1	2	3	4	5	6	7	0
5	5						
2	5	4	1	3			

Note

In the second sample all of subsequences of length 3 have exactly 3 records, and none other subsequences have exactly 3 records, so the sum is equal to $(-1)^{3}\binom{7}{3}=-35$, which is 998244318 modulo 998244353 .
In the third sample none of the subsequences have exactly 5 records, and the sum of empty set is 0 .

