Problem J. Kth Lex Min Min Min Subpalindromes

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 mebibytes

Consider all arrays with length n consisting of integers from 1 to m. Let P be the minimum number of continuous subarrays that are palindromic one such array can have. Recall that an array is palindromic if it is equal to its own reverse.
Find the k-th lexicographically minimal array with P continuous subarrays that are palindromic. We are still only considering arrays with length n consisting of integers from 1 to m.

In other words, let's take all arrays with length n consisting of integers from 1 to m, leave only those of them that have the minimum number of continuous subarrays that are palindromic, and sort them lexicographically. Your task is to find k-th of them in this order.

Input

The only line of input contains three integers n, m and $k\left(1 \leq n \leq 10^{6}, 1 \leq m \leq 10^{6}, 1 \leq k \leq 10^{18}\right)$.

Output

If there are less than k valid arrays, print -1 . Otherwise, print the k-th lexicographically minimal of them.

Examples

standard input	standard output
111	1
222	21
333	213
998244353	241268127
107998244353	-1
31000994253860	998244353

Note

Did we put min number of min in the title? Min.

