

The 1st Universal Cup Stage 13: Iberia, Apr 22-23, 2023

Problem J. Kth Lex Min Min Subpalindromes

Input file: standard input
Output file: standard output

Time limit: 3 seconds Memory limit: 512 mebibytes

Consider all arrays with length n consisting of integers from 1 to m. Let P be the minimum number of continuous subarrays that are palindromic one such array can have. Recall that an array is palindromic if it is equal to its own reverse.

Find the k-th lexicographically minimal array with P continuous subarrays that are palindromic. We are still only considering arrays with length n consisting of integers from 1 to m.

In other words, let's take all arrays with length n consisting of integers from 1 to m, leave only those of them that have the minimum number of continuous subarrays that are palindromic, and sort them lexicographically. Your task is to find k-th of them in this order.

Input

The only line of input contains three integers n, m and k $(1 \le n \le 10^6, 1 \le m \le 10^6, 1 \le k \le 10^{18})$.

Output

If there are less than k valid arrays, print -1. Otherwise, print the k-th lexicographically minimal of them.

Examples

standard input	standard output
1 1 1	1
2 2 2	2 1
3 3 3	2 1 3
9 9 8244353	2 4 1 2 6 8 1 2 7
10 7 998244353	-1
3 1000 994253860	998 244 353

Note

Did we put min number of min in the title? Min.