

Problem L. 5

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	555 mebibytes

You are given an array a of length n consisting of non-negative integers. Calculate the number of pairs (k, T) such that there exists a subsequence of a of length k whose sum is equal to T.

Just kidding, this is too general. Suppose the sum of elements of a is equal to S, then it is guaranteed that a has at least S/5 elements equal to 1.

Input

The first line contains two positive integers n and S $(1 \le n, S \le 2 \cdot 10^5)$ — the number of elements in a and their sum.

The second line contains the array a_1, a_2, \ldots, a_n $(0 \le a_i \le S)$. It is guaranteed that $\sum_{i=1}^n a_i = S$ and at least S/5 elements of a are equal to 1.

Output

Print the number of pairs (k, T) such that there exists a subsequence of a of length k whose sum is equal to T.

Examples

standard input	standard output
79	42
0 0 0 1 1 2 5	
10 33	48
998111111	
10 14	81
2 4 4 1 0 1 0 1 0 1	
10 14	87
3 5 3 0 1 0 1 0 1 0	