Problem L. 5

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	555 mebibytes

You are given an array a of length n consisting of non-negative integers. Calculate the number of pairs (k, T) such that there exists a subsequence of a of length k whose sum is equal to T.
Just kidding, this is too general. Suppose the sum of elements of a is equal to S, then it is guaranteed that a has at least $S / 5$ elements equal to 1 .

Input

The first line contains two positive integers n and $S\left(1 \leq n, S \leq 2 \cdot 10^{5}\right)$ - the number of elements in a and their sum.
The second line contains the array $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq S\right)$. It is guaranteed that $\sum_{i=1}^{n} a_{i}=S$ and at least $S / 5$ elements of a are equal to 1 .

Output

Print the number of pairs (k, T) such that there exists a subsequence of a of length k whose sum is equal to T.

Examples

standard input	standard output
$\begin{array}{llllllll} \hline 7 & 9 & & & & & \\ 0 & 0 & 0 & 1 & 1 & 2 & 5 \end{array}$	42
$\begin{array}{llllllllll} 10 & 3 & & & & & & & \\ 9 & 9 & 8 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{array}$	48
$\begin{array}{lllllllll} \hline 10 & 14 & & & & & & \\ 2 & 4 & 4 & 1 & 0 & 1 & 0 & 1 & 0 \end{array} 1$	81
$\begin{array}{llllllllll} 10 & 14 & & & & & & \\ 3 & 5 & 3 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{array}$	87

