Problem L. Impress Her

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
1.5 seconds

256 mebibytes

Zenyk decided to impress Marichka and solve the following interesting problem.
You are given a matrix of size $n \times m$ filled with integers. It's guaranteed that all cells which contain the same value are 4 -side connected.
Let's define a convex hall of a connected component as minimum-area rectangle (with sides parallel to the matrix sides) that covers all cells of the component. The task is to count the number of pairs of components a and b for which the convex hall of a is inside the convex hall of b. Please note that the convex halls may touch by the side.

Input

The first line contains a pair of integers n and $m(1 \leq n, m \leq 500)$ - the number of rows and columns of the matrix. The next n lines contain m integers each, which represent the matrix. It's guaranteed that matrix integers will be non-negative and won't exceed 10^{6}.

Output

In the only line print a single integer - the answer to the problem.

Example

			standard input		standard output
3	4			3	
1	2	2	4		
1	1	1	4		
5	1	7	4		

