Task 4: Curtains

Benson the Rabbit is organizing a performance on his plane!
He has a stage with n sections numbered 1 to n from left to right. He also has m curtains numbered from 1 to m.

Each of these m curtains can be lowered. Lowering curtain i covers sections $l[i]$ to $r[i]$. A curtain configuration is a set of lowered curtains. Given a curtain configuration, a section x $(1 \leq x \leq n)$ is covered if and only if there exists a lowered curtain i such that $l[i] \leq x \leq r[i]$.

Benson wants to give a total of q performances, numbered from 1 to q. For each performance j, Benson requires a curtain configuration such that the sections $s[j]$ to $e[j]$ are covered and nothing else is covered. More formally, for each $1 \leq x \leq n$,

- If $s[j] \leq x \leq e[j]$, section x is covered.
- Otherwise, section x is not covered.

For each of these q performances, help Benson to determine if there exists a curtain configuration satisfying his requirements.

Input format

Your program must read from standard input.
The first line of input will contain 3 spaced integers n, m and q, representing the number of sections, curtains and performances respectively.

The next m lines of input will contain 2 spaced integers each. The i-th of these lines will contain $l[i]$ and $r[i]$ respectively, describing the range of sections that curtain i can cover.

The next q lines of input will contain 2 spaced integers each. The j-th of these lines will contain $s[j]$ and $e[j]$ respectively, describing the range of sections that need to be covered for performance j.

Output format

Output q lines, the j-th of which should contain YES if it is possible to cover the required sections for the j-th performance using the curtains, and NO otherwise.

Subtasks

For all subtasks, it is guaranteed that:

- $1 \leq n, m, q \leq 500000$
- $1 \leq l[i] \leq r[i] \leq n($ for all $1 \leq i \leq m)$
- $1 \leq s[j] \leq e[j] \leq n($ for all $1 \leq j \leq q)$

Your program will be tested on input instances that satisfy the following restrictions:

Subtask	Marks	Additional Constraints
1	3	$1 \leq n, m, q \leq 200$
2	6	$1 \leq n, m, q \leq 2000$
3	15	$1 \leq n \leq 2000$
4	20	$s[j]=1$
5	36	$1 \leq n, m, q \leq 100000$
6	20	No additional restrictions

Sample Testcase 1

This testcase is valid for all subtasks.

	Input		Output	
6	2	3	NO	
1	2		YES	
3	4			
1	3			
1	4			
1	5			

Sample Testcase 1 Explanation

Benson has 6 sections and 2 curtains. Curtain 1 covers sections 1 and 2 while curtain 2 covers sections 3 and 4 .

It is not possible to exactly cover sections 1 to 3 . It is also not possible to exactly cover sections 1 to 5 . However, he can use both curtains to cover sections 1 to 4 exactly.

Sample Testcase 2

Input		
10	10	10
6	9	NO
6	7	NO
1	6	YES
10	10	NO
5	9	YES
3	9	NO
2	10	NO
5	7	NO
9	10	
5	10	YES
7	8	
4	7	
1	6	
2	7	
3	9	
7	7	
2	9	9
4	9	
6	6	
5	7	

