Problem D. Master of Both III

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

Prof.Chen is the master of theoretical computer science and table tennis. Now he is busy playing table tennis, so he left this algorithm problem for you.
You are given an integer n. For each set S, let $f(S)$ be the minimum sum of costs of operations to change all elements in S into 0 . The only operation you can perform on S is:

- Select a subset $T \subseteq S$ and an integer y, and assign $S \leftarrow S \backslash T \cup\{(x+y) \bmod n \mid x \in T\}$. The cost of this operation is w_{y}.

For example, assume $S=\{0,1,1\}$. If we select $T=\{0,1\}$ and $y=2$ to perform the operation, $\{(x+y) \bmod$ $n \mid x \in T\}=\{2,0\}$. So S becomes $\{2,0,1\}$ after the operation.
Calculate $f(S)$ for each non-empty set $S \subseteq\{0,1, \ldots, n-1\}$ that does not contains duplicate elements. In order to avoid massive amount of output, output:

$$
\sum_{\varnothing \neq S \subseteq\{0,1, \ldots, n-1\}} f(S) \cdot \sum_{v \in S} 2^{v}
$$

Since the answer might be large, output it modulo 998244353.

Input

The first line contains one integer $n(1 \leq n \leq 22)$, denoting the limit of the set described above.
The second line contains n integers, the i-th integer is $w_{i-1}\left(1 \leq w_{i-1} \leq 10^{9}\right)$, denoting the cost of the operations.

Output

Output one integer in one line, the answer.

Examples

standard input			standard output	
3	1	2		45
4			152175989	
1919810	999999998	999999997	114114514	

