Problem E. Puzzle: Tapa

Input file: standard input
Output file: standard output
Time limit:
Memory limit:
1 second
1024 megabytes

A tapa is an appetizer or snack in Spanish cuisine.

- Wikipedia

Grammy is a puzzle master. Today, she is playing a variant of "Tapa" puzzle. In this variant, there are $n \times m$ clues on an $(2 n-1) \times(2 m-1)$ rectangular grid. All the clues are located on cells (i, j) where i, j are both odd. Each clue is a number that is either equal to or one less than the number of cells around the clue. Specifically, the clues on the corners of the grid can be 2 or 3 , the clues on the edges of the grid can be 4 or 5 , and the clues on the center of the grid can be 7 or 8 . The goal is to shade some cells such that:

- All clue cells are unshaded.
- Each clue cell denotes the number of consecutive shaded cells around it.

The top-left picture illustrates a possible 5×5 grid with only clues, the top-right picture shows a possible way to solve the puzzle, and the bottom picture shows a wrong solution to a puzzle since the shaded cells around 4 are not consecutive.

Grammy surely knows how to solve the puzzle, but she decided to give you a quiz. Please solve the puzzle.

Input

The first line contains two integers $n, m(2 \leq n, m \leq 50)$, denoting the size of the grid.
Each of the next $2 n-1$ lines contains $2 m-1$ characters denoting the grid with given clues. A dot($\left.{ }^{(} .{ }^{.}\right)$ denotes a cell without a clue, while a digit denotes a clue on the cell. It is guaranteed that every cell on the intersection of odd row and odd column has a clue, and all other cells do not contain any clues.

Output

If the solution does not exist, output "NO" on a single line.
Otherwise, output "YES" on the first line, then output $2 n-1$ lines, each of which contains $2 m-1$ characters, denoting the solution to the puzzle. The format is similar to the input grid, but you should mark the shaded cells with ' $\#$ '. In other words, a $\operatorname{dot}\left({ }^{(} .{ }^{\prime}\right)$ in your output denotes an unshaded cell without a clue, a hash('\#') denotes a shaded cell, and a digit denotes a clue on the cell.
If there are multiple solutions, output any.

Examples

	standard input
3	YES
2.4 .3	$2.4 \# 3$
$\ldots \ldots$	standard output
5.8 .5	$5 \# \# \#$
$\ldots \ldots$	\#\#\#\#\#
3.5 .3	3\#5\#3
33	NO
3.4 .3	
$\ldots \ldots$	
5.7 .5	
$\ldots \ldots$	
3.5 .3	
22	
2.2	2.2
\ldots.	2.2

