## Problem F. Classic: Classical Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
5 seconds
1024 megabytes

Deja vu!
I've just been in this place before.

- Dave Rodgers, Deja Vu

This is a classical problem, so let's make it quick.
Given a set $S$ of $n$ numbers and a prime number $p$, find all integer $c(0 \leq c<p)$ such that $\operatorname{mex}\left(S_{c}\right)$ is maximized where $S_{c}=\{(c \cdot x) \bmod p \mid x \in S\}$. Here $\operatorname{mex}(S)$ is the smallest non-negative integer $x$ such that $x \notin S$.

## Input

The input contains multiple test cases.
The first line contains an integer $T$, denoting the number of test cases.
For each test case, the first line contains two integers $n, p\left(1 \leq n \leq p \leq 2 \times 10^{5}\right)$, denoting the size of the set and the prime. It is guaranteed that $p$ is a prime.
The following line contains $n$ integers, the $i$-th integer is $a_{i}\left(0 \leq a_{i}<p\right)$, denoting one element in the set. It is guaranteed that $a_{i} \neq a_{j}$ if $i \neq j$.
It is guaranteed that the sum of $p$ over all test cases will not exceed $2 \times 10^{5}$.

## Output

For each test case, output two integers $k, m$ on the first line, denoting the number of $c$ and the mex.
Output $k$ integers on the following line, denoting the possible $c$ in increasing order.

## Example

|  | standard input |  | standard output |  |
| :--- | :--- | :--- | :--- | :--- |
| 3 |  | 1 | 2 |  |
| 2 | 3 | 2 |  |  |
| 0 | 2 | 1 | 1 |  |
| 3 | 5 | 0 |  |  |
| 2 | 3 | 4 | 2 | 2 |
| 3 | 5 | 2 | 3 |  |
| 0 | 2 | 3 |  |  |

