The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial
March 19-25, 2019 (Komaba/Yoyogi, Tokyo)
Contest Day 1 - Naan

Naan

JOI Curry Shop is famous for serving very long naans. They have L kinds of flavors, numbered from 1 through L, to flavor naans. "JOI Special Naan" is the most popular menu in the shop. The length of the naan is $L \mathrm{~cm}$. We define "the position x " as the position on the naan which is $x \mathrm{~cm}$ distant from the left end of the naan. The segment between position $j-1$ and position j is flavored by flavor $j(1 \leq j \leq L)$.
N people came to JOI Curry Shop. Their preferences are different from each other. Specifically, when the i-th $(1 \leq j \leq L)$ person eats naan with flavor $j(1 \leq j \leq L)$, they will get happiness $V_{i, j}$ per 1 cm .
They ordered only one JOI Special Naan. They will share the naan in the following manner:

1. Choose $N-1$ rational numbers X_{1}, \ldots, X_{N-1} which satisfy $0<X_{1}<X_{2}<\cdots<X_{N-1}<L$.
2. Choose N integers P_{1}, \ldots, P_{N} which form a permutation of $1, \ldots, N$.
3. For each $k(1 \leq k \leq N-1)$, cut the naan at the position X_{k}. Thus, the naan will be separated into N pieces.
4. For each $k(1 \leq k \leq N)$, give the piece between the position X_{k-1} and position X_{k} to the P_{k}-th person. We consider X_{0} as 0 and X_{N} as L.

We want to distribute the naan fairly. We say a distribution is fair if each person gets happiness of more than or equal to $\frac{1}{N}$ of the amount of happiness they will get by eating the whole JOI Special Naan.

Write a program which, given the information of preferences of N people, determines if it is possible to distribute the naan in a fair way, and if it is possible, finds such a fair way.

Input

Read the following data from the standard input. All the values in the input are integers.
$N L$

$$
\begin{aligned}
& V_{1,1} V_{1,2} \cdots V_{1, L} \\
& \vdots \\
& V_{N, 1} V_{N, 2} \cdots V_{N, L}
\end{aligned}
$$

The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial
March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Contest Day 1 - Naan

Output

Write to the standard output. If it is impossible to distribute naan in a fair way, write -1 in a line. If it is possible, output $N-1$ rational numbers X_{1}, \ldots, X_{N-1} and N integers P_{1}, \ldots, P_{N} which represent a fair distribution, in the following format.

$$
\begin{aligned}
& A_{1} B_{1} \\
& A_{2} B_{2} \\
& \vdots \\
& A_{N-1} B_{N-1} \\
& P_{1} P_{2} \cdots P_{N}
\end{aligned}
$$

A_{k} and B_{k} are a pair of integers which satisfies $X_{k}=\frac{A_{k}}{B_{k}}(1 \leq k \leq N-1)$. These integers have to follow the "Constraints of Output" section.

Constraints of Input

- $2 \leq N \leq 2000$.
- $1 \leq L \leq 2000$.
- $1 \leq V_{i, j} \leq 100000(1 \leq i \leq N, 1 \leq j \leq L)$.

Constraints of Output

If it is possible to distribute the naan in a fair way, the output must satisfy the following constraints:

- $1 \leq B_{k} \leq 1000000000(1 \leq k \leq N-1)$.
- $0<\frac{A_{1}}{B_{1}}<\frac{A_{2}}{B_{2}}<\cdots<\frac{A_{N-1}}{B_{N-1}}<L$.
- P_{1}, \ldots, P_{N} is a permutation of $1, \ldots, N$.
- In the distribution, the amount of happiness which i-th person will get is more than or equal to $\frac{V_{i, 1}+V_{i, 2}+\cdots+V_{i, L}}{N}(1 \leq i \leq N)$.
A_{k} and B_{k} are not necessary to be coprime ($1 \leq k \leq N-1$).
Under the constraints of the input, it can be proved that if a fair distribution exists, there is a correct output which satisfies $1 \leq B_{k} \leq 1000000000(1 \leq k \leq N-1)$.

Subtasks

1. (5 points) $N=2$.
2. (24 points) $N \leq 6, V_{i, j} \leq 10(1 \leq i \leq N, 1 \leq j \leq L)$.
3. (71 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1							
2	5			14				
2	7	1	8	2				
3	1	4	1	5	$	$	2	1
:---	:---							

In this sample, the first person will get happiness of $2+7+1+8+2=20$ when she eats the whole naan and the second person will get happiness of $3+1+4+1+5=14$ when she eats the whole naan. Thus, if the first person gets happiness of more than or equal to $\frac{20}{2}=10$ and the second person gets happiness of more than or equal to $\frac{14}{2}=7$, the distribution is fair.

If you cut the naan at the position $\frac{14}{5}$, the first person will get happiness of $1 \times \frac{1}{5}+8+2=\frac{51}{5}$ and the second person will get happiness of $3+1+4 \times \frac{4}{5}=\frac{36}{5}$. Hence, this is a fair distribution.

Sample Input 2	Sample Output 2
71	17
1	27
2	37
3	47
4	57
5	67
6	3142765
7	

In this sample, the naan has only one flavor. If you equally divide the naan into 7 pieces, the distribution will be fair, regardless of P_{1}, \ldots, P_{N}.

The 18th Japanese Olympiad in Informatics (JOI 2018/2019)
Spring Training Camp/Qualifying Trial March 19-25, 2019 (Komaba/Yoyogi, Tokyo)

Sample Input 3	Sample Output 3						
5	3	15					
2	3	1					
1	1	1					
2	2	1					
1	2	2					
1	2	1	$	$	35	28	
:---	:---	:---					
50	28						
70	28						
3	1	5					

Note that A_{k} and B_{k} are not necessary to be coprime $(1 \leq k \leq N-1)$.

