

Naan

JOI Curry Shop is famous for serving very long naans. They have *L* kinds of flavors, numbered from 1 through *L*, to flavor naans. "JOI Special Naan" is the most popular menu in the shop. The length of the naan is *L* cm. We define "the position *x*" as the position on the naan which is *x* cm distant from the left end of the naan. The segment between position j - 1 and position *j* is flavored by flavor $j (1 \le j \le L)$.

N people came to JOI Curry Shop. Their preferences are different from each other. Specifically, when the *i*-th $(1 \le j \le L)$ person eats naan with flavor j $(1 \le j \le L)$, they will get happiness $V_{i,j}$ per 1 cm.

They ordered only one JOI Special Naan. They will share the naan in the following manner:

- 1. Choose N 1 rational numbers X_1, \ldots, X_{N-1} which satisfy $0 < X_1 < X_2 < \cdots < X_{N-1} < L$.
- 2. Choose *N* integers P_1, \ldots, P_N which form a permutation of $1, \ldots, N$.
- 3. For each k ($1 \le k \le N 1$), cut the naan at the position X_k . Thus, the naan will be separated into N pieces.
- 4. For each k ($1 \le k \le N$), give the piece between the position X_{k-1} and position X_k to the P_k -th person. We consider X_0 as 0 and X_N as *L*.

We want to distribute the naan fairly. We say a distribution is **fair** if each person gets happiness of more than or equal to $\frac{1}{N}$ of the amount of happiness they will get by eating the whole JOI Special Naan.

Write a program which, given the information of preferences of N people, determines if it is possible to distribute the naan in a fair way, and if it is possible, finds such a fair way.

Input

Read the following data from the standard input. All the values in the input are integers.

N L $V_{1,1} V_{1,2} \cdots V_{1,L}$ \vdots $V_{N,1} V_{N,2} \cdots V_{N,L}$

Output

Write to the standard output. If it is impossible to distribute naan in a fair way, write -1 in a line. If it is possible, output N - 1 rational numbers X_1, \ldots, X_{N-1} and N integers P_1, \ldots, P_N which represent a fair distribution, in the following format.

 $A_1 B_1$ $A_2 B_2$ $A_{N-1} B_{N-1}$ $P_1 P_2 \cdots P_N$

 A_k and B_k are a pair of integers which satisfies $X_k = \frac{A_k}{B_k}$ $(1 \le k \le N - 1)$. These integers have to follow the "Constraints of Output" section.

Constraints of Input

- $2 \le N \le 2000$.
- $1 \le L \le 2000$.
- $1 \le V_{i,j} \le 100\,000 \ (1 \le i \le N, 1 \le j \le L).$

Constraints of Output

If it is possible to distribute the naan in a fair way, the output must satisfy the following constraints:

• $1 \le B_k \le 1\,000\,000\,000\,(1 \le k \le N-1).$

•
$$0 < \frac{A_1}{R} < \frac{A_2}{R} < \dots < \frac{A_{N-1}}{R} < R$$

- $0 < \frac{A_1}{B_1} < \frac{A_2}{B_2} < \dots < \frac{A_{N-1}}{B_{N-1}} < L.$ P_1, \dots, P_N is a permutation of $1, \dots, N$.
- In the distribution, the amount of happiness which *i*-th person will get is more than or equal to $\frac{V_{i,1} + V_{i,2} + \dots + V_{i,L}}{N} \quad (1 \le i \le N).$

 A_k and B_k are **not** necessary to be coprime $(1 \le k \le N - 1)$.

Under the constraints of the input, it can be proved that if a fair distribution exists, there is a correct output which satisfies $1 \le B_k \le 1\,000\,000\,000\,(1 \le k \le N - 1)$.

Subtasks

- 1. (5 points) N = 2.
- 2. (24 points) $N \le 6$, $V_{i,j} \le 10$ ($1 \le i \le N$, $1 \le j \le L$).
- 3. (71 points) No additional constraints.

Sample Input and Output

Sample Input 1	Sample Output 1
2 5	14 5
27182	2 1
3 1 4 1 5	

In this sample, the first person will get happiness of 2 + 7 + 1 + 8 + 2 = 20 when she eats the whole naan and the second person will get happiness of 3 + 1 + 4 + 1 + 5 = 14 when she eats the whole naan. Thus, if the first person gets happiness of more than or equal to $\frac{20}{2} = 10$ and the second person gets happiness of more than or equal to $\frac{14}{2} = 7$, the distribution is fair.

If you cut the naan at the position $\frac{14}{5}$, the first person will get happiness of $1 \times \frac{1}{5} + 8 + 2 = \frac{51}{5}$ and the second person will get happiness of $3 + 1 + 4 \times \frac{4}{5} = \frac{36}{5}$. Hence, this is a fair distribution.

Sample Input 2	Sample Output 2
7 1	1 7
1	2 7
2	3 7
3	4 7
4	5 7
5	6 7
6	3 1 4 2 7 6 5
7	

In this sample, the naan has only one flavor. If you equally divide the naan into 7 pieces, the distribution will be fair, regardless of P_1, \ldots, P_N .

Contest Day 1 - Naan

Sample Input 3	Sample Output 3
5 3	15 28
2 3 1	35 28
1 1 1	50 28
2 2 1	70 28
1 2 2	3 1 5 2 4
1 2 1	

Note that A_k and B_k are not necessary to be coprime $(1 \le k \le N - 1)$.