Problem I. MEXimum Spanning Tree

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Maximum spanning tree is a classical problem in computer science. One day, Grammy came out with a brand new variation of this problem. She wants to find a spanning tree of a weighted graph such that the MEX of the edge weights on the spanning tree is maximized.
The MEX(Minimum EXcluded natrual number) of a set is the minimum natrual number which does not appear in the set. For example, $\operatorname{MEX}(\{0,2,4,5,7\})=1, \operatorname{MEX}(\{0,1,2,3,6\})=4, \operatorname{MEX}(\{3\})=0$.
Please help Grammy to solve this problem.

Input

The first line contains two integers n, $m(1 \leq n \leq 1000,0 \leq m \leq 1000)$, denoting the number of vertices and the number of edges.
In each of the following m lines, there are three integers $u_{i}, v_{i}, w_{i}\left(1 \leq u_{i}, v_{i} \leq n, u_{i} \neq v_{i}, 0 \leq w_{i} \leq n\right)$, denoting that there is an edge from vertex u_{i} to vertex v_{i} with weight w_{i}.
It is guaranteed that the graph is connected.

Output

Output one integer, denoting the maximum MEX of the spanning tree.

Example

		standard input		standard output
4	4		3	
1	2	0		
2	3	1		
1	3	1		
3	4	2		

