

Problem A. Classical A+B Problem

Input file:	standard input
Output file:	standard output
Time limit:	4 seconds
Memory limit:	512 mebibytes

An integer is called a *repdigit* if it is positive and its decimal representation consists of repeated instances of the same digit. For example, 1, 666, 4444, and 999999 are repdigits, while 0, 44244, 50216, and 787788 are not.

You are given a positive integer n. It is known that n can be represented as n = a + b, where a and b are repdigits. Find any such representation.

Input

Each test contains multiple test cases. The first line contains the number of test cases t $(1 \le t \le 10^4)$. The description of the test cases follows.

The only line of each test case contains a single integer n without leading zeros $(2 \le n < 10^{4000})$. It is guaranteed that n can be represented as n = a + b, where a and b are repdigits.

It is guaranteed that the total number of digits in n over all test cases does not exceed 10^5 .

Output

For each test case, print two integers a and b such that n = a + b and both a and b are repdigits.

If there are multiple solutions, print any of them.

Example

standard input	standard output
6	1 1
2	777 9
786	333 999
1332	88888 222
89110	2222222 111111
2333333	99999999999999999999999999999 2
100000000000000000000000000000000000000	