Problem A. Classical A+B Problem

Input file:
Output file:
Time limit:
Memory limit
standard input
standard output
4 seconds
512 mebibytes

An integer is called a repdigit if it is positive and its decimal representation consists of repeated instances of the same digit. For example, $1,666,4444$, and 999999 are repdigits, while $0,44244,50216$, and 787788 are not.

You are given a positive integer n. It is known that n can be represented as $n=a+b$, where a and b are repdigits. Find any such representation.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{4}\right)$. The description of the test cases follows.
The only line of each test case contains a single integer n without leading zeros ($2 \leq n<10^{4000}$). It is guaranteed that n can be represented as $n=a+b$, where a and b are repdigits.
It is guaranteed that the total number of digits in n over all test cases does not exceed 10^{5}.

Output

For each test case, print two integers a and b such that $n=a+b$ and both a and b are repdigits. If there are multiple solutions, print any of them.

Example

standard input	standard output
6	1 1
2	$777 \quad 9$
786	333 999
1332	$88888 \quad 222$
89110	2222222111111
2333333	99999999999999999999999999992
1000000000000000000000000001	

