Problem B. Classical Counting Problem

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

For an upcoming contest, n problems are proposed. Problem i has an initial integer score of a_{i} points.
There are m judges who will vote for problems they like. Each judge will choose exactly v problems, independently from other judges, and increase the score of each chosen problem by 1.

After all m judges cast their vote, the problems will be sorted in non-increasing order of score, and the first p problems will be chosen for the problemset, for some p between 1 and n. Problems with the same score can be ordered arbitrarily (this order is decided by the contest director).

How many different problemsets are possible? Print this number modulo 998244353 . Two problemsets are considered different if some problem belongs to one of them but not to the other.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t(1 \leq t \leq 50)$. The description of the test cases follows.
The first line of each test case contains three integers n, m, and v, denoting the number of problems, the number of judges, and the number of problems every judge will vote for ($2 \leq n \leq 100 ; 1 \leq m \leq 100$; $1 \leq v \leq n-1$).
The second line contains n integers $a_{1}, a_{2}, \ldots, a_{n}$, denoting the initial scores of the problems ($0 \leq a_{i} \leq 100$).
It is guaranteed that the sum of n over all test cases does not exceed 100 .

Output

For each test case, print the number of possible problemsets, modulo 998244353.

Example

standard input	standard output
6	5
312	6
123	1023
321	23
123	19
1011	240
0000000000	
612	
211302	
615	
211302	
1048	
7236165465	

Note

In the first test case, all possible problemsets are $\{2\},\{3\},\{1,3\},\{2,3\}$, and $\{1,2,3\}$.
In the second test case, all possible problemsets are $\{1\},\{2\},\{3\},\{1,3\},\{2,3\}$, and $\{1,2,3\}$.
In the third test case, any non-empty subset of problems is a possible problemset.

