

Problem C. Classical Data Structure Problem

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	128 mebibytes

You have an integer array $A = [a_0, a_1, \ldots, a_{2^m-1}]$ of length 2^m . Initially, the array consists of zeros.

You also have an integer variable x. Initially, x = 0.

For each i = 1, 2, ..., n, you are given two integers p_i and q_i , and you have to perform the following steps:

- Let $p' = (p_i + x) \mod 2^m$ and $q' = (q_i + x) \mod 2^m$.
- Let $l = \min(p', q')$ and $r = \max(p', q')$.
- For each j = l, l + 1, ..., r, increase a_j by i, then increase x by a_j .

Find the value of $x \mod 2^{30}$ at the end of this process.

Input

The first line contains two integers n and m $(1 \le n \le 500\,000; 1 \le m \le 30)$. The *i*-th of the following n lines contains two integers p_i and q_i $(0 \le p_i, q_i < 2^m)$.

Output

Print the value of $x \mod 2^{30}$.

Example

standard input	standard output
5 2	87
2 1	
1 3	
3 2	
1 0	
0 2	

Note

In the example test, initially, A = [0, 0, 0, 0] and x = 0. Then:

- For i = 1, we have l = 1 and r = 2. Then, A = [0, 1, 1, 0] and x = 2.
- For i = 2, we have l = 1 and r = 3. Then, A = [0, 3, 3, 2] and x = 10.
- For i = 3, we have l = 0 and r = 1. Then, A = [3, 6, 3, 2] and x = 19.
- For i = 4, we have l = 0 and r = 3. Then, A = [7, 10, 7, 6] and x = 49.
- For i = 5, we have l = 1 and r = 3. Then, A = [7, 15, 12, 11] and x = 87.