Problem C. Classical Data Structure Problem

Input file: standard input
Output file: standard output
Time limit:
Memory limit:

3 seconds
128 mebibytes

You have an integer array $A=\left[a_{0}, a_{1}, \ldots, a_{2^{m}-1}\right]$ of length 2^{m}. Initially, the array consists of zeros.
You also have an integer variable x. Initially, $x=0$.
For each $i=1,2, \ldots, n$, you are given two integers p_{i} and q_{i}, and you have to perform the following steps:

- Let $p^{\prime}=\left(p_{i}+x\right) \bmod 2^{m}$ and $q^{\prime}=\left(q_{i}+x\right) \bmod 2^{m}$.
- Let $l=\min \left(p^{\prime}, q^{\prime}\right)$ and $r=\max \left(p^{\prime}, q^{\prime}\right)$.
- For each $j=l, l+1, \ldots, r$, increase a_{j} by i, then increase x by a_{j}.

Find the value of $x \bmod 2^{30}$ at the end of this process.

Input

The first line contains two integers n and $m(1 \leq n \leq 500000 ; 1 \leq m \leq 30)$.
The i-th of the following n lines contains two integers p_{i} and $q_{i}\left(0 \leq p_{i}, q_{i}<2^{m}\right)$.

Output

Print the value of $x \bmod 2^{30}$.

Example

	standard input	standard output	
5	2	87	
2	1		
1	3		
3	2		
1	0		
0	2		

Note

In the example test, initially, $A=[0,0,0,0]$ and $x=0$. Then:

- For $i=1$, we have $l=1$ and $r=2$. Then, $A=[0,1,1,0]$ and $x=2$.
- For $i=2$, we have $l=1$ and $r=3$. Then, $A=[0,3,3,2]$ and $x=10$.
- For $i=3$, we have $l=0$ and $r=1$. Then, $A=[3,6,3,2]$ and $x=19$.
- For $i=4$, we have $l=0$ and $r=3$. Then, $A=[7,10,7,6]$ and $x=49$.
- For $i=5$, we have $l=1$ and $r=3$. Then, $A=[7,15,12,11]$ and $x=87$.

