

Problem H. Classical Maximization Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given 2n distinct points on a plane. Point *i* has integer coordinates (x_i, y_i) .

Points i and j are a *friendly pair* if either $x_i = x_j$ or $y_i = y_j$.

Form n pairs of points. Every point must belong to exactly one pair. The number of friendly pairs among your n pairs must be maximized.

Input

Each test contains multiple test cases. The first line contains the number of test cases t $(1 \le t \le 10^4)$. The description of the test cases follows.

The first line of each test case contains a single integer $n \ (1 \le n \le 10^5)$.

The *i*-th of the next 2n lines contains two integers x_i and y_i , denoting the coordinates of the *i*-th point $(-10^9 \le x_i, y_i \le 10^9)$. All points are distinct.

It is guaranteed that the sum of n over all test cases does not exceed 10^5 .

Output

For each test case, print a non-negative integer k, denoting the maximum possible number of friendly pairs.

In the *i*-th of the next *n* lines, print two integers a_i and b_i , denoting a pair formed by points a_i and b_i $(1 \le a_i, b_i \le 2n; a_i \ne b_i)$.

Every integer from 1 to 2n must appear among a_i and b_i exactly once. The number of indices i such that points a_i and b_i are a friendly pair must be equal to k.

standard input standard output 3 2 2 4 2 0 0 3 1 2 0 1 43 1 0 1 1 2 1 2 0 0 0 1 2 0 1 3 4 0 2 03 2 0 0 1 1 2 2 33

Example