Problem H. Classical Maximization Problem

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 mebibytes

You are given $2 n$ distinct points on a plane. Point i has integer coordinates $\left(x_{i}, y_{i}\right)$.
Points i and j are a friendly pair if either $x_{i}=x_{j}$ or $y_{i}=y_{j}$.
Form n pairs of points. Every point must belong to exactly one pair. The number of friendly pairs among your n pairs must be maximized.

Input

Each test contains multiple test cases. The first line contains the number of test cases $t\left(1 \leq t \leq 10^{4}\right)$. The description of the test cases follows.

The first line of each test case contains a single integer $n\left(1 \leq n \leq 10^{5}\right)$.
The i-th of the next $2 n$ lines contains two integers x_{i} and y_{i}, denoting the coordinates of the i-th point $\left(-10^{9} \leq x_{i}, y_{i} \leq 10^{9}\right)$. All points are distinct.
It is guaranteed that the sum of n over all test cases does not exceed 10^{5}.

Output

For each test case, print a non-negative integer k, denoting the maximum possible number of friendly pairs.
In the i-th of the next n lines, print two integers a_{i} and b_{i}, denoting a pair formed by points a_{i} and b_{i} $\left(1 \leq a_{i}, b_{i} \leq 2 n ; a_{i} \neq b_{i}\right)$.
Every integer from 1 to $2 n$ must appear among a_{i} and b_{i} exactly once. The number of indices i such that points a_{i} and b_{i} are a friendly pair must be equal to k.

Example

	standard input		standard output
3		2	
2		2	4
0	0	3	1
0	1	2	
1	0	4	3
1	1	2	1
2		0	
0	0	1	2
0	1	3	4
0	2		
0	3		
2			
0	0		
1	1		
2	2	3	
3			

