Problem D. Degree of Spanning Tree

Given an undirected connected graph with n vertices and m edges, your task is to find a spanning tree of the graph such that for every vertex in the spanning tree its degree is not larger than $\frac{n}{2}$.
Recall that the degree of a vertex is the number of edges it is connected to.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers n and $m\left(2 \leq n \leq 10^{5}, n-1 \leq m \leq 2 \times 10^{5}\right)$ indicating the number of vertices and edges in the graph.
For the following m lines, the i-th line contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$ indicating that there is an edge connecting vertex u_{i} and v_{i}. Please note that there might be self loops or multiple edges.
It's guaranteed that the given graph is connected. It's also guaranteed that the sum of n of all test cases will not exceed 5×10^{5}, also the sum of m of all test cases will not exceed 10^{6}.

Output

For each test case, if such spanning tree exists first output "Yes" (without quotes) in one line, then for the following $(n-1)$ lines print two integers p_{i} and q_{i} on the i-th line separated by one space, indicating that there is an edge connecting vertex p_{i} and q_{i} in the spanning tree. If no valid spanning tree exists just output "No" (without quotes) in one line.

Example

	standard input		standard output
2		Yes	
6	9	1	2
1	2	1	3
1	3	1	4
1	4	4	5
2	3	4	
2	4		
3	4	No	
4	5		
4	6		
4	6		
3	4		
1	3		
2	3		
3	3	2	

Note

For the first sample test case, the maximum degree among all vertices in the spanning tree is 3 (both vertex 1 and vertex 4 has a degree of 3). As $3 \leq \frac{6}{2}$ this is a valid answer.
For the second sample test case, it's obvious that any spanning tree will have a vertex with degree of 2 , as $2>\frac{3}{2}$ no valid answer exists.

