Problem D. Degree of Spanning Tree

Given an undirected connected graph with n vertices and m edges, your task is to find a spanning tree of the graph such that for every vertex in the spanning tree its degree is not larger than $\frac{n}{2}$.

Recall that the degree of a vertex is the number of edges it is connected to.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:

The first line contains two integers n and m $(2 \le n \le 10^5, n-1 \le m \le 2 \times 10^5)$ indicating the number of vertices and edges in the graph.

For the following m lines, the *i*-th line contains two integers u_i and v_i $(1 \le u_i, v_i \le n)$ indicating that there is an edge connecting vertex u_i and v_i . Please note that there might be self loops or multiple edges.

It's guaranteed that the given graph is connected. It's also guaranteed that the sum of n of all test cases will not exceed 5×10^5 , also the sum of m of all test cases will not exceed 10^6 .

Output

For each test case, if such spanning tree exists first output "Yes" (without quotes) in one line, then for the following (n-1) lines print two integers p_i and q_i on the *i*-th line separated by one space, indicating that there is an edge connecting vertex p_i and q_i in the spanning tree. If no valid spanning tree exists just output "No" (without quotes) in one line.

standard input	standard output
2	Yes
6 9	1 2
1 2	1 3
1 3	1 4
1 4	4 5
2 3	4 6
2 4	No
3 4	
4 5	
4 6	
4 6	
3 4	
1 3	
2 3	
3 3	
1 2	

Example

Note

For the first sample test case, the maximum degree among all vertices in the spanning tree is 3 (both vertex 1 and vertex 4 has a degree of 3). As $3 \le \frac{6}{2}$ this is a valid answer.

For the second sample test case, it's obvious that any spanning tree will have a vertex with degree of 2, as $2 > \frac{3}{2}$ no valid answer exists.