Problem M. Monster Hunter

There is a rooted tree with n vertices and the root vertex is 1 . In each vertex, there is a monster. The hit points of the monster in the i-th vertex is $h p_{i}$.
Kotori would like to kill all the monsters. The monster in the i-th vertex could be killed if the monster in the direct parent of the i-th vertex has been killed. The power needed to kill the i-th monster is the sum of $h p_{i}$ and the hit points of all other living monsters who lives in a vertex j whose direct parent is i. Formally, the power equals to

$$
h p_{i}+\sum_{\substack{\text { the monster in vertex } j \text { is alive } \\ \text { and } i \text { is the direct parent of } j}} h p_{j}
$$

In addition, Kotori can use some magic spells. If she uses one magic spell, she can kill any monster using 0 power without any restriction. That is, she can choose a monster even if the monster in the direct parent is alive.

For each $m=0,1,2, \cdots, n$, Kotori would like to know, respectively, the minimum total power needed to kill all the monsters if she can use m magic spells.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer $n\left(2 \leq n \leq 2 \times 10^{3}\right)$, indicating the number of vertices.
The second line contains $(n-1)$ integers $p_{2}, p_{3}, \cdots, p_{n}\left(1 \leq p_{i}<i\right)$, where p_{i} means the direct parent of vertex i.
The third line contains n integers $h p_{1}, h p_{2}, \cdots, h p_{n}\left(1 \leq h p_{i} \leq 10^{9}\right)$ indicating the hit points of each monster.
It's guaranteed that the sum of n of all test cases will not exceed 2×10^{3}.

Output

For each test case output one line containing $(n+1)$ integers $a_{0}, a_{1}, \cdots, a_{n}$ separated by a space, where a_{m} indicates the minimum total power needed to kill all the monsters if Kotori can use m magic spells.
Please, DO NOT output extra spaces at the end of each line, otherwise your answer may be considered incorrect!

Example

standard input	standard output
3	29169410
5	$\begin{array}{lllllllllll}74 & 47 & 35 & 25 & 15 & 11 & 7 & 3 & 1\end{array}$
1234	145115937355423222148410
12345	
9	
12343466	
849445241	
12	
12244534381011	
911351010737949	

