Problem D. Paimon Sorting

Paimon just invents a new sorting algorithm which looks much like bubble sort, with a few differences. It accepts a 1-indexed sequence A of length n and sorts it. Its pseudo-code is shown below.

```
Algorithm 1 The Sorting Algorithm
    function \(\operatorname{Sort}(A)\)
        for \(i \leftarrow 1\) to \(n\) do \(\quad \triangleright n\) is the number of elements in \(A\)
            for \(j \leftarrow 1\) to \(n\) do
                if \(a_{i}<a_{j}\) then \(\quad \triangleright a_{i}\) is the \(i\)-th element in \(A\)
                    Swap \(a_{i}\) and \(a_{j}\)
                end if
            end for
        end for
    end function
```

If you don't believe this piece of algorithm can sort a sequence it will also be your task to prove it. Anyway here comes the question:

Given an integer sequence $A=a_{1}, a_{2}, \cdots, a_{n}$ of length n, for each of its prefix A_{k} of length k (that is, for each $1 \leq k \leq n$, consider the subsequence $A_{k}=a_{1}, a_{2}, \cdots, a_{k}$), count the number of swaps performed if we call $\operatorname{SORT}\left(A_{k}\right)$.

Input

There are multiple test cases. The first line of the input contains an integer T indicating the number of test cases. For each test case:
The first line contains an integer $n\left(1 \leq n \leq 10^{5}\right)$ indicating the length of the sequence.
The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{i} \leq n\right)$ indicating the given sequence.
It's guaranteed that the sum of n of all test cases will not exceed 10^{6}.

Output

For each test case output one line containing n integers $s_{1}, s_{2}, \cdots, s_{n}$ separated by a space, where s_{i} is the number of swaps performed if we call $\operatorname{SORT}\left(A_{i}\right)$.
Please, DO NOT output extra spaces at the end of each line or your solution may be considered incorrect!

Example

standard input	standard output
3	02357
5	024
23215	0
3	
123	
1	
1	

