Problem G. Paimon's Tree

Paimon has found a tree with $(n+1)$ initially white vertices in her left pocket and decides to play with it. A tree with $(n+1)$ nodes is an undirected connected graph with n edges.
Paimon will give you an integer sequence $a_{1}, a_{2}, \cdots, a_{n}$ of length n. We first need to select a vertex in the tree and paint it black. Then we perform the following operation n times.
During the i-th operation, we select a white vertex x_{i} which is directly connected with a black vertex y_{i} by an edge, set the weight of that edge to a_{i} and also paint x_{i} in black. After these n operations we get a tree whose edges are all weighted.
What's the maximum length of the diameter of the weighted tree if we select the vertices optimally? The diameter of a weighted tree is the longest simple path in that tree. The length of a simple path is the sum of the weights of all edges in that path.

Input

There are multiple test cases. The first line of the input contains an integer $T\left(1 \leq T \leq 5 \times 10^{3}\right)$ indicating the number of test cases. For each test case:
The first line contains an integer $n(1 \leq n \leq 150)$ indicating the length of the sequence.
The second line contains n integers $a_{1}, a_{2}, \cdots, a_{n}\left(1 \leq a_{i} \leq 10^{9}\right)$ indicating the sequence.
For the following n lines, the i-th line contains two integers u_{i} and $v_{i}\left(1 \leq u_{i}, v_{i} \leq n+1\right)$ indicating that there is an edge connecting vertex u_{i} and v_{i} in the tree.
It's guaranteed that there is at most 10 test cases satisfying $n>20$.

Output

For each test case output one line containing one integer indicating the maximum length of the diameter of the tree.

Example

	standard input		standard output	
2			16	
5				
1	7	3	5	4
1	3			
2	3			
3	4			
4	5			
4	6			
1				
100000000000				
1	2			

Note

For the first sample test case, we select the vertices in the order of $1,3,4,5,2,6$, resulting in the weighted tree of the following image. It's obvious that the longest simple path is of length 16.

