

April 15, 2017

Problem D Heaps from Trees

You are given a rooted tree with n nodes. The nodes are labeled $1 . . n$, and node 1 is the root. Each node has a value v_{i}.

You would like to turn this tree into a heap. That is, you would like to choose the largest possible subset of nodes that satisfy this Heap Property: For every node pair i, j in the subset, if node i is an ancestor of node j in the tree, then $v_{i}>v_{j}$. Note that equality is not allowed.
Figure out the maximum number of nodes you can choose to form such a subset. The subset does not have to form a subtree.

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input will contain a single integer $n\left(1 \leq n \leq 2 \cdot 10^{5}\right)$, which is the number of nodes in the tree. The nodes are numbered 1..n.

Each of the next n lines will describe the nodes, in order. They will each contain two integers v_{i} and p_{i}, where $v_{i}\left(0 \leq v_{i} \leq 10^{9}\right)$ is the value in the node, and $p_{i}\left(0 \leq p_{i}<i\right)$ is the index of its parent. Every node's index will be strictly greater than its parent node's index. Only node 1, the root, will have $p_{1}=0$, since it has no parent. For all other nodes $(i=2 . . n), 1 \leq p_{i}<i$.

Output

Output a single integer representing the number of nodes in the largest subset satisfying the Heap Property.

\left.| Sample Input 1 | Sample Output 1 |
| :--- | :--- |
| 5 | |
| 3 | 0 |
| 3 | 1 |
| 3 | 2 |
| 3 | 3 |
| 3 | 4 |$\right)$

North American
Invitational Programming Contest 2017

April 15, 2017

Sample Input 2

Sample Output 2

5		5
4	0	
3	1	
2	2	
1	3	
0	4	

\left.| Sample Input 3 | Sample Output 3 |
| :--- | :--- |
| 6 | |
| 3 | 0 |
| 1 | 1 |
| 2 | 1 |
| 3 | 1 |
| 4 | 1 |$\right]$

\left.| Sample Input 4 | Sample Output 4 |
| :--- | :--- |
| 11 | 7 |
| 7 | 0 |
| 8 | 1 |
| 5 | 1 |
| 5 | 2 |
| 4 | 2 |
| 3 | 2 |
| 6 | 3 |
| 6 | 3 |
| 10 | 4 |
| 9 | 4 |
| 11 | 4 |$\right]$

