

Problem F Incremental Double Free Strings

A string is called **double free** if no two adjacent letters are the same.

A string is called *k*-incremental if for all values of j in the range [1, k], there exists exactly one character with j occurrences, and the string's length is $1+2+3+\ldots+(k-1)+k$. For example, if k = 3, then a 3-incremental string should have one character appear once, another twice, another three times, in any order, for a total string length of 6.

A string is both k-incremental and double free if it meets both these criteria. Now consider examining all such strings of lowercase letters for a given k in alphabetical order. Consider the following examples.

k=2:aba, aca, ada, \ldots , aya, aza, bab, bcb, bdb, \ldots , zxz, zyz

k = 3: ababac, ababad, ..., ababay, ababaz, ababca, ..., zyzyzx

What is the n^{th} string in an alphabetized list of all *k*-incremental, double free strings?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. There will be exactly one line of input. It will contain two integers, k and n $(1 \le k \le 26, 1 \le n \le 10^{18})$, which is asking for the n^{th} string in the alphabetically sorted list of all *k*-incremental, double free strings.

Output

Output the n^{th} k-incremental, double free string in the alphabetized list. If no such string exists, output -1.

Sample Input 1	Sample Output 1
2 650	zyz

April 15, 2017

Sample Input 2	Sample Output 2
2 651	-1

Sample Input 3	Sample Output 3
5 12345678901234	yuzczuyuyuzuyci