Problem F Incremental Double Free Strings

A string is called double free if no two adjacent letters are the same.
A string is called k-incremental if for all values of j in the range $[1, k]$, there exists exactly one character with j occurrences, and the string's length is $1+2+3+\ldots+(k-1)+k$. For example, if $k=3$, then a 3 -incremental string should have one character appear once, another twice, another three times, in any order, for a total string length of 6.

A string is both k-incremental and double free if it meets both these criteria. Now consider examining all such strings of lowercase letters for a given k in alphabetical order. Consider the following examples.
$k=2$: aba, aca, ada, \ldots, aya, aza, bab, bcb, bdb, $\ldots, \mathbf{z x z}, \mathbf{z y z}$
$k=3$: ababac, ababad, \ldots, ababay, ababaz, ababca, \ldots, zyzyzx
What is the $n^{\text {th }}$ string in an alphabetized list of all k-incremental, double free strings?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. There will be exactly one line of input. It will contain two integers, k and n ($1 \leq k \leq 26,1 \leq n \leq 10^{18}$), which is asking for the $n^{\text {th }}$ string in the alphabetically sorted list of all k-incremental, double free strings.

Output

Output the $n^{\text {th }} k$-incremental, double free string in the alphabetized list. If no such string exists, output -1 .

Sample Input 1

2650	zyz

North American
Invitational Programming Contest 2017
April 15, 2017

Sample Input 2	Sample Output 2
2651	-1

Sample Input 3
Sample Output 3
512345678901234 yuzczuyuyuzuyci

