

April 16, 2016

Problem A Fancy Antiques

You are hosting a fancy party for fancy friends. And, like any fancy party, you need to buy some fancy antiques to put up around the venue (your house).

There is a set of n fancy antiques that you need to buy. And there is a set of m fancy antique shops in the city. Because these antiques are extremely rare, each fancy antique can only be found at a single fancy antique shop. However, the fancy antique shops can also sell "knock-off" (duplicate) versions of some of the antiques. And of course, for any fancy antique, there is only a single fancy antique shop in the city that holds a knock-off version of that antique (this is to maintain the rareness of the antiques). The shop that sells the original is not always the same shop that holds the knock-off.

It turns out that even though you can tell the difference, most people cannot tell the original version from the knock-off version of any given antique. And, because the shops can get away with it, sometimes the knock-off is more expensive than the original! Since the party is tomorrow, you only have time to visit k shops. You would like to buy one version (either the original or the knock-off) of each of the n antiques.

Suppose that there are three shops, and three antiques we would like to buy.

- Antique $\# 1$ sells for 30 at shop $\# 1$. Its knockoff sells for 50 at shop $\# 2$.
- Antique $\# 2$ sells for 70 at shop $\# 2$. Its knockoff sells for 10 at shop $\# 3$.
- Antique $\# 3$ sells for 20 at shop $\# 3$. Its knockoff sells for 80 at shop $\# 1$.

Suppose you only have time to go to two shops. You can go to shops 1 and 3. You can buy the original of antique 1 with cost 30 at shop 1 , the original of antique 3 with cost 20 at shop 3 , and the knock-off of antique 2 at shop 3 with cost 10 . The total cost to buy these items is 60 , which is the minimum possible.

If you only have time to visit one shop, then it is impossible. You cannot buy a version of all three items by visiting a single shop.

Given the costs of the antiques/knock-offs at the shops, what is the minimum total cost to buy one version of each antique?

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input will consist of three space-separated integers: n, m, and k $(1 \leq n \leq 100,1 \leq k \leq m \leq 40)$. The next n lines will each have four space separated integers, a, p, b and q, describing an antique, where:

- a is the index of the shop that sells the original version of the antique $(1 \leq a \leq m)$
- p is the price of the original version of the antique at shop $a\left(1 \leq p \leq 10^{7}\right)$
- b is the index of the shop that sells the knock-off version of the antique $(1 \leq b \leq m)$
- q is the price of the knock-off version of the antique at shop $b\left(1 \leq q \leq 10^{7}\right)$

Output

If it is possible to collect all of the antiques while visiting no more than k stores, then output the minimum cost. If it is not possible, output -1 .

Sample Input 1 Sample Output 1

3	3	2	60
1	30	2	50
2	70	3	10
3	20	1	80

Sample Input 2 Sample Output 2

$\left.$| 3 | 3 | 1 | -1 |
| :--- | :--- | :--- | :--- |
| 1 | 30 | 2 | 50 |
| 2 | 70 | 3 | 10 |
| 3 | 20 | 1 | 80 |$\quad \right\rvert\,$

