

April 16, 2016

Problem I Tourists

In Tree City, there are n tourist attractions uniquely labeled 1 to n. The attractions are connected by a set of $n-1$ bidirectional roads in such a way that a tourist can get from any attraction to any other using some path of roads.

You are a member of the Tree City planning committee. After much research into tourism, your committee has discovered a very interesting fact about tourists: they LOVE number theory! A tourist who visits an attraction with label x will then visit another attraction with label y if $y>x$ and y is a multiple of x. Moreover, if the two attractions are not directly connected by a road the tourist will necessarily visit all of the attractions on the path connecting x and y, even if they aren't multiples of x. The number of attractions visited includes x and y themselves. Call this the length of a path.

Consider this city map:

Here are all the paths that tourists might take, with the lengths for each:

To take advantage of this phenomenon of tourist behavior, the committee would like to determine the number of attractions on paths from an attraction x to an attraction y such that $y>x$ and y is a multiple of x. You are to compute the sum of the lengths of all such paths. For the example above, this is: $4+3+2+2+3+4+3+3+2+5+6+2+3+3+3+4+3=55$.

April 16, 2016

Input

Each input will consist of a single test case. Note that your program may be run multiple times on different inputs. The first line of input will consist of an integer $n(2 \leq n \leq 200,000)$ indicating the number of attractions. Each of the following $n-1$ lines will consist of a pair of space-separated integers i and $j(1 \leq i<j \leq n)$, denoting that attraction i and attraction j are directly connected by a road. It is guaranteed that the set of attractions is connected.

Output

Output a single integer, which is the sum of the lengths of all paths between two attractions x and y such that $y>x$ and y is a multiple of x.

Sample Input 1	Sample Output 1
10	55
3	4
3	7
1	4
4	6
1	10
8	10
2	8
1	5
4	9

