

Southeastern European Regional Programming Contest Bucharest, Romania – Vinnytsya, Ukraine October 21, 2017

Problem D Harry Potter and The Vector Spell

Input File: D.in Output File: standard output Time Limit: *1* second (C/C++) Memory Limit: *256* megabytes

Harry Potter has found another strange spell in Half-blood Prince diary, that could generate a different binary vector of size **M**. As he is not the best magician, this spell does not work perfectly so he could generate only vectors where exactly **2** elements are non zero. Harry has used this spell **N** times and he has constructed a matrix of M rows and N columns, where all generated vectors are columns.

Now Harry has a class of Magical Matrix Theory, where the professor asked him to calculate the rank of such a matrix. You are here to help him!

Operations in Magical Matrix Theory satisfied next rules:

+	0	1	*	0	1
0	0	1	0	0	0
1	1	0	1	0	1

The rank of a matrix A corresponds to the maximal number of linearly independent columns of A. The vectors in a set $T = {\vec{v_1}, \vec{v_2}, ..., \vec{v_k}}$ are said to be linearly independent if the equation

 $a_1 \overrightarrow{v_1} + a_2 \overrightarrow{v_2} + \ldots + a_k \overrightarrow{v_k} = \overrightarrow{0}$, where $a_i = \{0,1\}$ for $i = 1, \ldots, k$ can only be satisfied by $a_i = 0$ for $i = 1, \ldots, k$.

Input

On the first line two integers - **M** (size of vectors) and **N** (number of vectors generated by Harry). Each of the next **M** lines has the format: $k_i c_1 c_2 \dots c_{k_i}$, where k_i is the number of non-zero elements in row *i*. The next k_i numbers are column indexes ($1 \le c_j \le N, j = 1, \dots, k_i$), which are non-zero in this row. For more details, see examples.

 $1 \le N \le 10^5$ $2 \le M \le 10^5$

$$\begin{array}{c} 2 \\ 0 \\ <= \\ k_i \\ <= \\ N \end{array}$$

Output

Sample input 1	Sample output 1		
3 3	2		
2 1 3			
2 1 2			
2 2 3			

Sample input 2	Sample output 2		
4 3	3		
3 1 2 3			
1 1			
1 2			
1 3			

In first example, Harry has generated 3 vectors: $\overrightarrow{v_1} = (1, 1, 0), \overrightarrow{v_2} = (0, 1, 1), \overrightarrow{v_3} = (1, 0, 1)$ and the matrix is:

 $\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$

But $\overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3} = \overrightarrow{0}$.