Southeastern European Regional Programming Contest Bucharest, Romania - Vinnytsya, Ukraine

Problem D
 Harry Potter and The Vector Spell

Input File: D.in
Output File: standard output
Time Limit: 1 second (C/C++)
Memory Limit: 256 megabytes
Harry Potter has found another strange spell in Half-blood Prince diary, that could generate a different binary vector of size M. As he is not the best magician, this spell does not work perfectly so he could generate only vectors where exactly 2 elements are non zero.
Harry has used this spell \mathbf{N} times and he has constructed a matrix of M rows and N columns, where all generated vectors are columns.

Now Harry has a class of Magical Matrix Theory, where the professor asked him to calculate the rank of such a matrix. You are here to help him!

Operations in Magical Matrix Theory satisfied next rules:

+	0	1
0	0	1
1	1	0

$*$	0	1
0	0	0
1	0	1

The rank of a matrix A corresponds to the maximal number of linearly independent columns of A. The vectors in a set $T=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{k}}\right\}$ are said to be linearly independent if the equation $a_{1} \overrightarrow{v_{1}}+a_{2} \overrightarrow{v_{2}}+\ldots+a_{k} \overrightarrow{v_{k}}=\overrightarrow{0}$, where $a_{i}=\{0,1\}$ for $i=1, \ldots, k$ can only be satisfied by $a_{i}=0$ for $i=1, \ldots, k$.

Input

On the first line two integers - \mathbf{M} (size of vectors) and \mathbf{N} (number of vectors generated by Harry). Each of the next \mathbf{M} lines has the format: $k_{i} c_{1} c_{2} \ldots c_{k_{i}}$, where k_{i} is the number of non-zero elements in row i. The next k_{i} numbers are column indexes ($1<=c_{j}<=N, j=1, \ldots, k_{i}$), which are non-zero in this row. For more details, see examples.
$1<=N<=10^{5}$
$2<=M<=10^{5}$
$0<=k_{i}<=N$

Output

		Sample input 1	
3	3		2
2	1	3	
2	1	2	3

		Sample input 2		Sample output 2	
4	3		3		
3	1	2	3		
1	1				
1	2				
1	3				

In first example, Harry has generated 3 vectors:
and the matrix is:

$$
\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

But $\overrightarrow{v_{1}}+\overrightarrow{v_{2}}+\overrightarrow{v_{3}}=\overrightarrow{0}$.

